BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 17323149)

  • 1. The double porogen approach as a new technique for the fabrication of interconnected poly(L-lactic acid) and starch based biodegradable scaffolds.
    Ghosh S; Viana JC; Reis RL; Mano JF
    J Mater Sci Mater Med; 2007 Feb; 18(2):185-93. PubMed ID: 17323149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores.
    Chen VJ; Ma PX
    Biomaterials; 2004 May; 25(11):2065-73. PubMed ID: 14741621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of porous lamellar poly(L-lactic acid) scaffolds by conventional injection molding process.
    Ghosh S; Viana JC; Reis RL; Mano JF
    Acta Biomater; 2008 Jul; 4(4):887-96. PubMed ID: 18396473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable HA-PLA 3-D porous scaffolds: effect of nano-sized filler content on scaffold properties.
    Kothapalli CR; Shaw MT; Wei M
    Acta Biomater; 2005 Nov; 1(6):653-62. PubMed ID: 16701846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering.
    Liu X; Won Y; Ma PX
    Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique.
    Hou Q; Grijpma DW; Feijen J
    Biomaterials; 2003 May; 24(11):1937-47. PubMed ID: 12615484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle seeding enhances interconnectivity in polymeric scaffolds foamed using supercritical CO(2).
    Collins NJ; Bridson RH; Leeke GA; Grover LM
    Acta Biomater; 2010 Mar; 6(3):1055-60. PubMed ID: 19671454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering.
    Cui Z; Nelson B; Peng Y; Li K; Pilla S; Li WJ; Turng LS; Shen C
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1674-81. PubMed ID: 24364976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of poly(L-lactic acid) nanofiber scaffolds with a rough surface by phase inversion using supercritical carbon dioxide.
    Yang DZ; Chen AZ; Wang SB; Li Y; Tang XL; Wu YJ
    Biomed Mater; 2015 Jun; 10(3):035015. PubMed ID: 26107415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Technique paper for wet-spinning poly(L-lactic acid) and poly(DL-lactide-co-glycolide) monofilament fibers.
    Nelson KD; Romero A; Waggoner P; Crow B; Borneman A; Smith GM
    Tissue Eng; 2003 Dec; 9(6):1323-30. PubMed ID: 14670119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partially nanofibrous architecture of 3D tissue engineering scaffolds.
    Wei G; Ma PX
    Biomaterials; 2009 Nov; 30(32):6426-34. PubMed ID: 19699518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic mechanical behavior of starch-based scaffolds in dry and physiologically simulated conditions: effect of porosity and pore size.
    Ghosh S; Gutierrez V; Fernández C; Rodriguez-Perez MA; Viana JC; Reis RL; Mano JF
    Acta Biomater; 2008 Jul; 4(4):950-9. PubMed ID: 18331817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds.
    Flaibani M; Elvassore N
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1632-9. PubMed ID: 24364970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold.
    Wu L; Zhang H; Zhang J; Ding J
    Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A poly(L-lactic acid) nanofibre mesh scaffold for endothelial cells on vascular prostheses.
    François S; Chakfé N; Durand B; Laroche G
    Acta Biomater; 2009 Sep; 5(7):2418-28. PubMed ID: 19345622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology.
    Zhang R; Ma PX
    J Biomed Mater Res; 1999 Mar; 44(4):446-55. PubMed ID: 10397949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-state cryomilling for porogen mixing and porous scaffold fabrication - biomed 2011.
    Allaf RM; Rivero IV
    Biomed Sci Instrum; 2011; 47():258-63. PubMed ID: 21525630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering.
    Lou T; Wang X; Song G; Gu Z; Yang Z
    Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.