BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 17323164)

  • 1. Relationship between the fibroblastic behaviour and surface properties of RGD-immobilized PCL membranes.
    Karakecili A; Satriano C; Gumusderelioglu M; Marletta G
    J Mater Sci Mater Med; 2007 Feb; 18(2):317-9. PubMed ID: 17323164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatibility of Poly(epsilon-caprolactone) scaffold modified by chitosan--the fibroblasts proliferation in vitro.
    Mei N; Chen G; Zhou P; Chen X; Shao ZZ; Pan LF; Wu CG
    J Biomater Appl; 2005 Apr; 19(4):323-39. PubMed ID: 15788428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface properties and biocompatibility of solvent-cast poly[-caprolactone] films.
    Tang ZG; Black RA; Curran JM; Hunt JA; Rhodes NP; Williams DF
    Biomaterials; 2004 Aug; 25(19):4741-8. PubMed ID: 15120520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of chitosan-polycaprolactone blends for tissue engineering applications.
    Sarasam A; Madihally SV
    Biomaterials; 2005 Sep; 26(27):5500-8. PubMed ID: 15860206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the effects of fibre alignment of smooth and textured fibres in electrospun membranes on fibroblast cell adhesion.
    Truong YB; Glattauer V; Lang G; Hands K; Kyratzis IL; Werkmeister JA; Ramshaw JA
    Biomed Mater; 2010 Apr; 5(2):25005. PubMed ID: 20308775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gravity spun polycaprolactone fibres for soft tissue engineering: interaction with fibroblasts and myoblasts in cell culture.
    Williamson MR; Adams EF; Coombes AG
    Biomaterials; 2006 Mar; 27(7):1019-26. PubMed ID: 16054685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds.
    Ranjbar-Mohammadi M; Bahrami SH
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():71-9. PubMed ID: 25579898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small-diameter porous poly (epsilon-caprolactone) films enhance adhesion and growth of human cultured epidermal keratinocyte and dermal fibroblast cells.
    McMillan JR; Akiyama M; Tanaka M; Yamamoto S; Goto M; Abe R; Sawamura D; Shimomura M; Shimizu H
    Tissue Eng; 2007 Apr; 13(4):789-98. PubMed ID: 17228993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of bone marrow stromal cell behaviors on poly(caprolactone) with or without surface modification: studies on cell adhesion, survival and proliferation.
    Zhang H; Hollister S
    J Biomater Sci Polym Ed; 2009; 20(14):1975-93. PubMed ID: 19874672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved osteogenic differentiation of human marrow stromal cells cultured on ion-induced chemically structured poly-epsilon-caprolactone.
    Marletta G; Ciapetti G; Satriano C; Perut F; Salerno M; Baldini N
    Biomaterials; 2007 Feb; 28(6):1132-40. PubMed ID: 17118444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silk fibroin modified porous poly(epsilon-caprolactone) scaffold for human fibroblast culture in vitro.
    Chen G; Zhou P; Mei N; Chen X; Shao Z; Pan L; Wu C
    J Mater Sci Mater Med; 2004 Jun; 15(6):671-7. PubMed ID: 15346734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of irradiation modification and RGD sequence adsorption on the response of human osteoblasts to polycaprolactone.
    Marletta G; Ciapetti G; Satriano C; Pagani S; Baldini N
    Biomaterials; 2005 Aug; 26(23):4793-804. PubMed ID: 15763259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro characterization of polycaprolactone matrices generated in aqueous media.
    Pok SW; Wallace KN; Madihally SV
    Acta Biomater; 2010 Mar; 6(3):1061-8. PubMed ID: 19664731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification of ultra thin poly (epsilon-caprolactone) films using acrylic acid and collagen.
    Cheng Z; Teoh SH
    Biomaterials; 2004 May; 25(11):1991-2001. PubMed ID: 14741613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of an RGD-containing fusion protein CBD-RGD in promoting cellular adhesion.
    Hsu SH; Chu WP; Lin YS; Chiang YL; Chen DC; Tsai CL
    J Biotechnol; 2004 Jul; 111(2):143-54. PubMed ID: 15219401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of cell-binding peptides on poly-ε-caprolactone film surface to biomimic the peripheral nervous system.
    de Luca AC; Stevens JS; Schroeder SL; Guilbaud JB; Saiani A; Downes S; Terenghi G
    J Biomed Mater Res A; 2013 Feb; 101(2):491-501. PubMed ID: 22927333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial membrane potential and reactive oxygen species content of endothelial and smooth muscle cells cultured on poly(epsilon-caprolactone) films.
    Serrano MC; Pagani R; Manzano M; Comas JV; Portolés MT
    Biomaterials; 2006 Sep; 27(27):4706-14. PubMed ID: 16730794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and Surface Compatibility Study of Modified Electrospun Poly(ε-caprolactone) (PCL) Composites for Skin Tissue Engineering.
    Ghosal K; Manakhov A; Zajíčková L; Thomas S
    AAPS PharmSciTech; 2017 Jan; 18(1):72-81. PubMed ID: 26883261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterned melt electrospun substrates for tissue engineering.
    Dalton PD; Joergensen NT; Groll J; Moeller M
    Biomed Mater; 2008 Sep; 3(3):034109. PubMed ID: 18689917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of a biocomposite reinforced with hydrophilic eggshell proteins.
    Kim G; Min T; Park SA; Kim WD; Koh YH
    Biomed Mater; 2007 Dec; 2(4):250-6. PubMed ID: 18458482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.