These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 17323199)

  • 1. Restoration of coronary collateral growth in the Zucker obese rat: impact of VEGF and ecSOD.
    Hattan N; Chilian WM; Park F; Rocic P
    Basic Res Cardiol; 2007 May; 102(3):217-23. PubMed ID: 17323199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vascular endothelial growth factor is required for coronary collateral growth in the rat.
    Toyota E; Warltier DC; Brock T; Ritman E; Kolz C; O'Malley P; Rocic P; Focardi M; Chilian WM
    Circulation; 2005 Oct; 112(14):2108-13. PubMed ID: 16203926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs.
    Banai S; Jaklitsch MT; Shou M; Lazarous DF; Scheinowitz M; Biro S; Epstein SE; Unger EF
    Circulation; 1994 May; 89(5):2183-9. PubMed ID: 7514110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanistic basis for the disparate effects of angiotensin II on coronary collateral growth.
    Reed R; Kolz C; Potter B; Rocic P
    Arterioscler Thromb Vasc Biol; 2008 Jan; 28(1):61-7. PubMed ID: 17962624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of coronary blood flow during exercise.
    Duncker DJ; Bache RJ
    Physiol Rev; 2008 Jul; 88(3):1009-86. PubMed ID: 18626066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of obesity on coronary microvascular function in the Zucker rat.
    Prakash R; Mintz JD; Stepp DW
    Microcirculation; 2006; 13(5):389-96. PubMed ID: 16815824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevated 20-HETE impairs coronary collateral growth in metabolic syndrome via endothelial dysfunction.
    Joseph G; Soler A; Hutcheson R; Hunter I; Bradford C; Hutcheson B; Gotlinger KH; Jiang H; Falck JR; Proctor S; Schwartzman ML; Rocic P
    Am J Physiol Heart Circ Physiol; 2017 Mar; 312(3):H528-H540. PubMed ID: 28011587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of genotype on vascular endothelial growth factor and regulation of myocardial collateral blood flow in patients with acute and chronic coronary heart disease.
    Ripa RS; Jørgensen E; Baldazzi F; Frikke-Schmidt R; Wang Y; Tybjaerg-Hansen A; Kastrup J
    Scand J Clin Lab Invest; 2009; 69(6):722-8. PubMed ID: 19544222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of gene delivery on collateral development in chronic hypoperfusion: diverse effects of angiopoietin-1 versus vascular endothelial growth factor.
    Zhou YF; Stabile E; Walker J; Shou M; Baffour R; Yu Z; Rott D; Yancopoulos GD; Rudge JS; Epstein SE
    J Am Coll Cardiol; 2004 Aug; 44(4):897-903. PubMed ID: 15312878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal reactive oxygen species concentration and p38 MAP kinase are required for coronary collateral growth.
    Rocic P; Kolz C; Reed R; Potter B; Chilian WM
    Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H2729-36. PubMed ID: 17308014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth factors as a potential new treatment for ischemic heart disease.
    Bauters C
    Clin Cardiol; 1997 Nov; 20(11 Suppl 2):II-52-7. PubMed ID: 9422853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neutralizing VEGF antibody prevents glomerular hypertrophy in a model of obese type 2 diabetes, the Zucker diabetic fatty rat.
    Schrijvers BF; Flyvbjerg A; Tilton RG; Lameire NH; De Vriese AS
    Nephrol Dial Transplant; 2006 Feb; 21(2):324-9. PubMed ID: 16249198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beta-adrenergic modulation of the collateral-dependent coronary microcirculation.
    Sellke FW; Wang SY; Friedman M; Dai HB; Harada K; Lopez JJ; Simons M
    J Surg Res; 1995 Jul; 59(1):185-90. PubMed ID: 7630126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normalization of coronary microvascular reactivity and improvement in myocardial perfusion by surgical vascular endothelial growth factor therapy combined with oral supplementation of l-arginine in a porcine model of endothelial dysfunction.
    Voisine P; Bianchi C; Khan TA; Ruel M; Xu SH; Feng J; Li J; Malik T; Rosinberg A; Sellke FW
    J Thorac Cardiovasc Surg; 2005 Jun; 129(6):1414-20. PubMed ID: 15942586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracorporeal cardiac shock wave therapy markedly ameliorates ischemia-induced myocardial dysfunction in pigs in vivo.
    Nishida T; Shimokawa H; Oi K; Tatewaki H; Uwatoku T; Abe K; Matsumoto Y; Kajihara N; Eto M; Matsuda T; Yasui H; Takeshita A; Sunagawa K
    Circulation; 2004 Nov; 110(19):3055-61. PubMed ID: 15520304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angiopoietin-1 promotes functional neovascularization that relieves ischemia by improving regional reperfusion in a swine chronic myocardial ischemia model.
    Shim WS; Li W; Zhang L; Li S; Ong HC; Song IC; Bapna A; Ge R; Lim YT; Chuah SC; Sim EK; Wong P
    J Biomed Sci; 2006 Jul; 13(4):579-91. PubMed ID: 16547766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth factors and endothelial dysfunction.
    Bauters C; Six I; Meurice T; Van Belle E
    Drugs; 1999; 59 Spec No():11-5. PubMed ID: 10548387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local delivery of synthetic prostacycline agonist augments collateral growth and improves cardiac function in a swine chronic cardiac ischemia model.
    Iwata H; Nakamura K; Sumi M; Ninomiya M; Sakai Y; Hirata Y; Akaike M; Igarashi T; Takamoto S; Nagai R; Sata M
    Life Sci; 2009 Jul; 85(5-6):255-61. PubMed ID: 19527738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional characteristics of coronary vasomotor function following intramyocardial gene therapy with naked DNA encoding for vascular endothelial growth factor165.
    Tio RA; Wijpkema JS; Tan ES; Asselbergs FW; Hospers GA; Jessurun GA; Zijlstra F
    Endothelium; 2005; 12(3):103-6. PubMed ID: 16291512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal changes in myocardial basic fibroblast growth factor (FGF-2) activity following coronary artery ligation in the dog.
    Cohen MV; Vernon J; Yaghdjian V; Hatcher VB
    J Mol Cell Cardiol; 1994 May; 26(5):683-90. PubMed ID: 8072023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.