These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 17323319)
1. Characterization of a slowly degrading biodegradable polyester-urethane for tissue engineering scaffolds. Henry JA; Simonet M; Pandit A; Neuenschwander P J Biomed Mater Res A; 2007 Sep; 82(3):669-79. PubMed ID: 17323319 [TBL] [Abstract][Full Text] [Related]
2. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428 [TBL] [Abstract][Full Text] [Related]
4. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization. Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007 [TBL] [Abstract][Full Text] [Related]
5. Synthesis, characterization, and in vitro degradation of a biodegradable photo-cross-linked film from liquid poly(epsilon-caprolactone-co-lactide-co-glycolide) diacrylate. Shen JY; Pan XY; Lim CH; Chan-Park MB; Zhu X; Beuerman RW Biomacromolecules; 2007 Feb; 8(2):376-85. PubMed ID: 17291060 [TBL] [Abstract][Full Text] [Related]
6. Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study. Li X; Loh XJ; Wang K; He C; Li J Biomacromolecules; 2005; 6(5):2740-7. PubMed ID: 16153114 [TBL] [Abstract][Full Text] [Related]
7. Synthesis, characterization and cell compatibility of novel poly(ester urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) prepared by melting polymerization. Chen Z; Cheng S; Li Z; Xu K; Chen GQ J Biomater Sci Polym Ed; 2009; 20(10):1451-71. PubMed ID: 19622282 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, characterizations, and biocompatibility of block poly(ester-urethane)s based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) and poly(ε-caprolactone). Qiu H; Li D; Chen X; Fan K; Ou W; Chen KC; Xu K J Biomed Mater Res A; 2013 Jan; 101(1):75-86. PubMed ID: 22826204 [TBL] [Abstract][Full Text] [Related]
9. Comparison of cellular proliferation on dense and porous PCL scaffolds. Saşmazel HT; Gümüşderelioğlu M; Gürpinar A; Onur MA Biomed Mater Eng; 2008; 18(3):119-28. PubMed ID: 18725692 [TBL] [Abstract][Full Text] [Related]
10. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds. Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219 [TBL] [Abstract][Full Text] [Related]
11. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration. Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232 [TBL] [Abstract][Full Text] [Related]
12. Influences of tensile load on in vitro degradation of an electrospun poly(L-lactide-co-glycolide) scaffold. Li P; Feng X; Jia X; Fan Y Acta Biomater; 2010 Aug; 6(8):2991-6. PubMed ID: 20170760 [TBL] [Abstract][Full Text] [Related]
13. Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering. Sahoo S; Cho-Hong JG; Siew-Lok T Biomed Mater; 2007 Sep; 2(3):169-73. PubMed ID: 18458468 [TBL] [Abstract][Full Text] [Related]
14. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone). Seyednejad H; Gawlitta D; Kuiper RV; de Bruin A; van Nostrum CF; Vermonden T; Dhert WJ; Hennink WE Biomaterials; 2012 Jun; 33(17):4309-18. PubMed ID: 22436798 [TBL] [Abstract][Full Text] [Related]
15. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering. Wang F; Li Z; Lannutti JL; Wagner WR; Guan J Acta Biomater; 2009 Oct; 5(8):2901-12. PubMed ID: 19433136 [TBL] [Abstract][Full Text] [Related]
16. Melt-based compression-molded scaffolds from chitosan-polyester blends and composites: Morphology and mechanical properties. Correlo VM; Boesel LF; Pinho E; Costa-Pinto AR; Alves da Silva ML; Bhattacharya M; Mano JF; Neves NM; Reis RL J Biomed Mater Res A; 2009 Nov; 91(2):489-504. PubMed ID: 18985771 [TBL] [Abstract][Full Text] [Related]