These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
420 related articles for article (PubMed ID: 17323398)
41. Water-soluble green perylenediimide (PDI) dyes as potential sensitizers for photodynamic therapy. Yukruk F; Dogan AL; Canpinar H; Guc D; Akkaya EU Org Lett; 2005 Jul; 7(14):2885-7. PubMed ID: 15987161 [TBL] [Abstract][Full Text] [Related]
42. Reactive oxygen-dependent production of novel photochemotherapeutic agents. Pervaiz S FASEB J; 2001 Mar; 15(3):612-7. PubMed ID: 11259379 [TBL] [Abstract][Full Text] [Related]
43. Singlet oxygen: there is indeed something new under the sun. Ogilby PR Chem Soc Rev; 2010 Aug; 39(8):3181-209. PubMed ID: 20571680 [TBL] [Abstract][Full Text] [Related]
44. Theoretical and experimental analysis of the luminescence signal of singlet oxygen for different photosensitizers. Baier J; Fuss T; Pöllmann C; Wiesmann C; Pindl K; Engl R; Baumer D; Maier M; Landthaler M; Bäumler W J Photochem Photobiol B; 2007 Jun; 87(3):163-73. PubMed ID: 17482831 [TBL] [Abstract][Full Text] [Related]
45. In vitro photodynamic therapy on melanoma cell lines with phthalocyanine. Kolarova H; Nevrelova P; Bajgar R; Jirova D; Kejlova K; Strnad M Toxicol In Vitro; 2007 Mar; 21(2):249-53. PubMed ID: 17092686 [TBL] [Abstract][Full Text] [Related]
46. A Bifunctional Photosensitizer for Enhanced Fractional Photodynamic Therapy: Singlet Oxygen Generation in the Presence and Absence of Light. Turan IS; Yildiz D; Turksoy A; Gunaydin G; Akkaya EU Angew Chem Int Ed Engl; 2016 Feb; 55(8):2875-8. PubMed ID: 26799149 [TBL] [Abstract][Full Text] [Related]
47. Tritolylporphyrin dimer as a new potent hydrophobic sensitizer for photodynamic therapy of melanoma. Drzewiecka A; Urbańska K; Matuszak Z; Pineiro M; Arnaut LG; Habdas J; Ratuszna A; Stochel G Acta Biochim Pol; 2001; 48(1):277-82. PubMed ID: 11440180 [TBL] [Abstract][Full Text] [Related]
48. The microenvironment of DNA switches the activity of singlet oxygen generation photosensitized by berberine and palmatine. Hirakawa K; Hirano T Photochem Photobiol; 2008; 84(1):202-8. PubMed ID: 18173721 [TBL] [Abstract][Full Text] [Related]
49. Singlet oxygen signaling: from intimate to global. Kochevar IE Sci STKE; 2004 Feb; 2004(221):pe7. PubMed ID: 14983102 [TBL] [Abstract][Full Text] [Related]
51. Solvent dependent photosensitized singlet oxygen production from an Ir(III) complex: pointing to problems in studies of singlet-oxygen-mediated cell death. Takizawa SY; Breitenbach T; Westberg M; Holmegaard L; Gollmer A; Jensen RL; Murata S; Ogilby PR Photochem Photobiol Sci; 2015 Oct; 14(10):1831-43. PubMed ID: 26255622 [TBL] [Abstract][Full Text] [Related]
52. Photosensitization of singlet oxygen and in vivo photodynamic therapeutic effects mediated by PEGylated W(18)O(49) nanowires. Kalluru P; Vankayala R; Chiang CS; Hwang KC Angew Chem Int Ed Engl; 2013 Nov; 52(47):12332-6. PubMed ID: 24136871 [TBL] [Abstract][Full Text] [Related]
53. Art and science of photodynamic therapy. Pervaiz S; Olivo M Clin Exp Pharmacol Physiol; 2006; 33(5-6):551-6. PubMed ID: 16700893 [TBL] [Abstract][Full Text] [Related]
54. Photoinduced nitric oxide and singlet oxygen release from ZnPC liposome vehicle associated with the nitrosyl ruthenium complex: synergistic effects in photodynamic therapy application. Maranho DS; de Lima RG; Primo FL; da Silva RS; Tedesco AC Photochem Photobiol; 2009; 85(3):705-13. PubMed ID: 19076310 [TBL] [Abstract][Full Text] [Related]
55. A helpful technology--the luminescence detection of singlet oxygen to investigate photodynamic inactivation of bacteria (PDIB). Regensburger J; Maisch T; Felgenträger A; Santarelli F; Bäumler W J Biophotonics; 2010 Jun; 3(5-6):319-27. PubMed ID: 20222100 [TBL] [Abstract][Full Text] [Related]
56. Photodynamic therapy against cyanobacteria. Drábková M; Marsálek B; Admiraal W Environ Toxicol; 2007 Feb; 22(1):112-5. PubMed ID: 17295267 [TBL] [Abstract][Full Text] [Related]
57. Singlet molecular oxygen application for 2-chlorophenol removal. Gryglik D; Miller JS; Ledakowicz S J Hazard Mater; 2007 Jul; 146(3):502-7. PubMed ID: 17513046 [TBL] [Abstract][Full Text] [Related]
58. Synthesis of a photostable near-infrared-absorbing photosensitizer for selective photodamage to cancer cells. Hsieh TS; Wu JY; Chang CC Chemistry; 2014 Jul; 20(31):9709-15. PubMed ID: 24990530 [TBL] [Abstract][Full Text] [Related]
59. [Photodynamic therapy as a new prospective method for cancer treatment. I. History, basic principles]. Zimcík P; Miletín M Ceska Slov Farm; 2004 Sep; 53(5):219-24. PubMed ID: 15506703 [TBL] [Abstract][Full Text] [Related]
60. [18O]-labeled singlet oxygen as a tool for mechanistic studies of 8-oxo-7,8-dihydroguanine oxidative damage: detection of spiroiminodihydantoin, imidazolone and oxazolone derivatives. Martinez GR; Medeiros MH; Ravanat JL; Cadet J; Di Mascio P Biol Chem; 2002; 383(3-4):607-17. PubMed ID: 12033450 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]