BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 17323971)

  • 1. Interaction with and effects on the profile of proteins of Botrytis cinerea by C6 aldehydes.
    Myung K; Hamilton-Kemp TR; Archbold DD
    J Agric Food Chem; 2007 Mar; 55(6):2182-8. PubMed ID: 17323971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct fungicidal activities of C6-aldehydes are important constituents for defense responses in Arabidopsis against Botrytis cinerea.
    Kishimoto K; Matsui K; Ozawa R; Takabayashi J
    Phytochemistry; 2008 Aug; 69(11):2127-32. PubMed ID: 18556030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the cell wall of the ubiquitous plant pathogen Botrytis cinerea.
    Cantu D; Greve LC; Labavitch JM; Powell AL
    Mycol Res; 2009 Dec; 113(Pt 12):1396-403. PubMed ID: 19781643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of phytopathogenic fungus Botrytis cinerea as a potential tool for identifying pathogenicity factors, therapeutic targets and for basic research.
    Fernández-Acero FJ; Jorge I; Calvo E; Vallejo I; Carbú M; Camafeita E; Garrido C; López JA; Jorrin J; Cantoral JM
    Arch Microbiol; 2007 Mar; 187(3):207-15. PubMed ID: 17124592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of hexanal vapor on the growth of postharvest pathogens and fruit decay.
    Song J; Hildebrand PD; Fan L; Forney CF; Renderos WE; Campbell-Palmer L; Doucette C
    J Food Sci; 2007 May; 72(4):M108-12. PubMed ID: 17995777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Volatile C6-aldehydes and Allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana.
    Kishimoto K; Matsui K; Ozawa R; Takabayashi J
    Plant Cell Physiol; 2005 Jul; 46(7):1093-102. PubMed ID: 15879447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypical differences among B. cinerea isolates from ornamental plants.
    Martínez JA; Valdés R; Vicente MJ; Bañón S
    Commun Agric Appl Biol Sci; 2008; 73(2):121-9. PubMed ID: 19226749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of the phytopathogenic fungus Botrytis cinerea during cellulose degradation.
    Fernández-Acero FJ; Colby T; Harzen A; Cantoral JM; Schmidt J
    Proteomics; 2009 May; 9(10):2892-902. PubMed ID: 19415670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mycoparasitism of Acremonium strictum BCP on Botrytis cinerea, the gray mold pathogen.
    Choi GJ; Kim JC; Jang KS; Cho KY; Kim HT
    J Microbiol Biotechnol; 2008 Jan; 18(1):167-70. PubMed ID: 18239435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of trans-2-hexenal in response to wounding in strawberry fruit.
    Myung K; Hamilton-Kemp TR; Archbold DD
    J Agric Food Chem; 2006 Feb; 54(4):1442-8. PubMed ID: 16478272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of fatty acid derived aldehydes is induced upon mechanical wounding and its products show fungicidal activities in cucumber.
    Matsui K; Minami A; Hornung E; Shibata H; Kishimoto K; Ahnert V; Kindl H; Kajiwara T; Feussner I
    Phytochemistry; 2006 Apr; 67(7):649-57. PubMed ID: 16497344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the effects of chemical versus biological control on Botrytis cinerea agent of gray mould disease of strawberry.
    Alizadeh HR; Sharifi-Tehrani A; Hedjaroude GA
    Commun Agric Appl Biol Sci; 2007; 72(4):795-800. PubMed ID: 18396812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Action mechanism for 3β-hydroxykaurenoic acid and 4,4-dimethylanthracene-1,9,10(4H)-trione on Botrytis cinerea.
    Mendoza L; Ribera A; Saavedra A; Silva E; Araya-Maturana R; Cotoras M
    Mycologia; 2015; 107(4):661-6. PubMed ID: 25977212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia.
    Huang R; Li GQ; Zhang J; Yang L; Che HJ; Jiang DH; Huang HC
    Phytopathology; 2011 Jul; 101(7):859-69. PubMed ID: 21323467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis of the inhibitory effect of oligochitosan on the fungal pathogen, Botrytis cinerea.
    Sui Y; Ma Z; Meng X
    J Sci Food Agric; 2019 Mar; 99(5):2622-2628. PubMed ID: 30417388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of a putative response regulator Brrg-1 in the regulation of sporulation, sensitivity to fungicides, and osmotic stress in Botrytis cinerea.
    Yan L; Yang Q; Jiang J; Michailides TJ; Ma Z
    Appl Microbiol Biotechnol; 2011 Apr; 90(1):215-26. PubMed ID: 21161211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen, Botrytis cinerea.
    Chen H; Xiao X; Wang J; Wu L; Zheng Z; Yu Z
    Biotechnol Lett; 2008 May; 30(5):919-23. PubMed ID: 18165869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antifungal activity and biotransformation of diisophorone by Botrytis cinerea.
    Daoubi M; Deligeorgopoulou A; Macías-Sánchez AJ; Hernández-Galán R; Hitchcock PB; Hanson JR; Collado IG
    J Agric Food Chem; 2005 Jul; 53(15):6035-9. PubMed ID: 16028992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro sensitivity of Botrytis cinerea to anthraquinone and anthrahydroquinone derivatives.
    Mendoza L; Araya-Maturana R; Cardona W; Delgado-Castro T; García C; Lagos C; Cotoras M
    J Agric Food Chem; 2005 Dec; 53(26):10080-4. PubMed ID: 16366698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of indole-3-acetic acid on Botrytis cinerea isolates obtained from potted plants.
    Martínez JA; Valdés R; Gómez-Bellot MJ; Bañón S
    Commun Agric Appl Biol Sci; 2011; 76(4):643-51. PubMed ID: 22702183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.