These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17324064)

  • 1. Behavioral adaptation of the Aplysia siphon-withdrawal response is accompanied by sensory adaptation.
    Calin-Jageman RJ; Fischer TM
    Behav Neurosci; 2007 Feb; 121(1):200-11. PubMed ID: 17324064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic regulation of the siphon withdrawal reflex of Aplysia californica in response to changes in the ambient tactile environment.
    Fischer TM; Yuan JW; Carew TJ
    Behav Neurosci; 2000 Dec; 114(6):1209-22. PubMed ID: 11142653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal and spatial aspects of an environmental stimulus influence the dynamics of behavioral regulation of the Aplysia siphon-withdrawal response.
    Calin-Jageman RJ; Fischer TM
    Behav Neurosci; 2003 Jun; 117(3):555-65. PubMed ID: 12802884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CNS control over gill reflex behaviors in Aplysia: satiation causes an increase in the suppressive control in older but not young animals.
    Lukowiak K
    J Neurobiol; 1980 Nov; 11(6):591-611. PubMed ID: 7441242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of low-threshold afferent activity may contribute to short-term habituation in Aplysia californica.
    Fischer TM; Jacobson DA; Counsell AN; Pelot MA; Demorest K
    Neurobiol Learn Mem; 2011 Mar; 95(3):248-59. PubMed ID: 21144906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural circuit of tail-elicited siphon withdrawal in Aplysia. I. Differential lateralization of sensitization and dishabituation.
    Bristol AS; Sutton MA; Carew TJ
    J Neurophysiol; 2004 Feb; 91(2):666-77. PubMed ID: 13679401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of reflex activity and central pattern generation in intact Aplysia.
    Pinsker HM
    J Physiol (Paris); 1982-1983; 78(8):775-85. PubMed ID: 6764924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Aplysia gill-withdrawal reflex revisited: components of the network.
    Leonard JL; Goldberg JI; Martinez-Padron M; Edstrom JP; Lukowiak K
    Acta Biol Hung; 1992; 43(1-4):387-98. PubMed ID: 1299126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cutaneous activation of the inhibitory L30 interneurons provides a mechanism for regulating adaptive gain control in the siphon withdrawal reflex of Aplysia.
    Fischer TM; Carew TJ
    J Neurosci; 1995 Jan; 15(1 Pt 2):762-73. PubMed ID: 7823178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic augmentation contributes to environment-driven regulation of the aplysia siphon-withdrawal reflex.
    Calin-Jageman RJ; Fischer TM
    J Neurosci; 2003 Dec; 23(37):11611-20. PubMed ID: 14684863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Central and peripheral control of siphon-withdrawal reflex in Aplysia californica.
    Perlman AJ
    J Neurophysiol; 1979 Mar; 42(2):510-29. PubMed ID: 217974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential role of inhibition in habituation of two independent afferent pathways to a common motor output.
    Bristol AS; Carew TJ
    Learn Mem; 2005; 12(1):52-60. PubMed ID: 15647595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulus-response relations and stability of mechanoreceptor and motor neurons mediating defensive gill-withdrawal reflex in Aplysia.
    Byrne JH; Castellucci VF; Carew TJ; Kandel ER
    J Neurophysiol; 1978 Mar; 41(2):402-17. PubMed ID: 650274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cellular analysis of inhibition in the siphon withdrawal reflex of Aplysia.
    Wright WG; Marcus EA; Carew TJ
    J Neurosci; 1991 Aug; 11(8):2498-509. PubMed ID: 1869927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient and steady-state dynamics of cortical adaptation.
    Webber RM; Stanley GB
    J Neurophysiol; 2006 May; 95(5):2923-32. PubMed ID: 16467421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-dependent potentiation of recurrent inhibition: a mechanism for dynamic gain control in the siphon withdrawal reflex of Aplysia.
    Fischer TM; Carew TJ
    J Neurosci; 1993 Mar; 13(3):1302-14. PubMed ID: 8441012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor neuronal control of tail-directed and head-directed siphon responses in Aplysia californica.
    Hickie C; Walters ET
    J Neurophysiol; 1995 Jul; 74(1):307-21. PubMed ID: 7472333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Realistic simulation of the Aplysia siphon-withdrawal reflex circuit: roles of circuit elements in producing motor output.
    Lieb JR; Frost WN
    J Neurophysiol; 1997 Mar; 77(3):1249-68. PubMed ID: 9084594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular studies of peripheral neurons in siphon skin of Aplysia californica.
    Bailey CH; Castellucci VF; Koester J; Kandel ER
    J Neurophysiol; 1979 Mar; 42(2):530-57. PubMed ID: 422976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical recording and information theoretic analysis of Aplysia gill-withdrawal reflex.
    Shiono S; Nakashima M; Yamada S; Matsumoto K
    Jpn J Physiol; 1993; 43 Suppl 1():S31-6. PubMed ID: 8271513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.