BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 17324068)

  • 1. Biological implementation of the temporal difference algorithm for reinforcement learning: theoretical comment on O'Reilly et al. (2007).
    Houk JC
    Behav Neurosci; 2007 Feb; 121(1):231-2. PubMed ID: 17324068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of rat behavior by a reinforcement learning algorithm in consideration of appearance probabilities of reinforcement signals.
    Murakoshi K; Noguchi T
    Biosystems; 2005 Apr; 80(1):83-90. PubMed ID: 15740837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An implementation of reinforcement learning based on spike timing dependent plasticity.
    Roberts PD; Santiago RA; Lafferriere G
    Biol Cybern; 2008 Dec; 99(6):517-23. PubMed ID: 18941775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the asymptotic equivalence between differential Hebbian and temporal difference learning.
    Kolodziejski C; Porr B; Wörgötter F
    Neural Comput; 2009 Apr; 21(4):1173-202. PubMed ID: 19018698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PVLV: the primary value and learned value Pavlovian learning algorithm.
    O'Reilly RC; Frank MJ; Hazy TE; Watz B
    Behav Neurosci; 2007 Feb; 121(1):31-49. PubMed ID: 17324049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Mathematical models of decision making and learning].
    Ito M; Doya K
    Brain Nerve; 2008 Jul; 60(7):791-8. PubMed ID: 18646619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-term memory traces for action bias in human reinforcement learning.
    Bogacz R; McClure SM; Li J; Cohen JD; Montague PR
    Brain Res; 2007 Jun; 1153():111-21. PubMed ID: 17459346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A spiking neural network model of an actor-critic learning agent.
    Potjans W; Morrison A; Diesmann M
    Neural Comput; 2009 Feb; 21(2):301-39. PubMed ID: 19196231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient reinforcement learning: computational theories, neuroscience and robotics.
    Kawato M; Samejima K
    Curr Opin Neurobiol; 2007 Apr; 17(2):205-12. PubMed ID: 17374483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reinforcement learning in continuous time and space: interference and not ill conditioning is the main problem when using distributed function approximators.
    Baddeley B
    IEEE Trans Syst Man Cybern B Cybern; 2008 Aug; 38(4):950-6. PubMed ID: 18632383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive learning via selectionism and Bayesianism, Part I: connection between the two.
    Zhang J
    Neural Netw; 2009 Apr; 22(3):220-8. PubMed ID: 19386469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple model-based reinforcement learning explains dopamine neuronal activity.
    Bertin M; Schweighofer N; Doya K
    Neural Netw; 2007 Aug; 20(6):668-75. PubMed ID: 17611074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inter-module credit assignment in modular reinforcement learning.
    Samejima K; Doya K; Kawato M
    Neural Netw; 2003 Sep; 16(7):985-94. PubMed ID: 14692633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement learning with modulated spike timing dependent synaptic plasticity.
    Farries MA; Fairhall AL
    J Neurophysiol; 2007 Dec; 98(6):3648-65. PubMed ID: 17928565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Posterior weighted reinforcement learning with state uncertainty.
    Larsen T; Leslie DS; Collins EJ; Bogacz R
    Neural Comput; 2010 May; 22(5):1149-79. PubMed ID: 20100078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust reinforcement learning.
    Morimoto J; Doya K
    Neural Comput; 2005 Feb; 17(2):335-59. PubMed ID: 15720771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hebbian errors in learning: an analysis using the Oja model.
    Rădulescu A; Cox K; Adams P
    J Theor Biol; 2009 Jun; 258(4):489-501. PubMed ID: 19248792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological arm motion through reinforcement learning.
    Izawa J; Kondo T; Ito K
    Biol Cybern; 2004 Jul; 91(1):10-22. PubMed ID: 15309543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the sub-cellular signaling pathways involved in reinforcement learning at the striatum.
    Wanjerkhede SM; Bapi RS
    Prog Brain Res; 2008; 168():193-206. PubMed ID: 18166396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive properties of differential learning rates for positive and negative outcomes.
    Cazé RD; van der Meer MA
    Biol Cybern; 2013 Dec; 107(6):711-9. PubMed ID: 24085507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.