These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 17325000)

  • 1. Photoreverse reaction dynamics of octopus rhodopsin.
    Inoue K; Tsuda M; Terazima M
    Biophys J; 2007 May; 92(10):3643-51. PubMed ID: 17325000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A spectrally silent transformation in the photolysis of octopus rhodopsin: a protein conformational change without any accompanying change of the chromophore's absorption.
    Nishioku Y; Nakagawa M; Tsuda M; Terazima M
    Biophys J; 2001 Jun; 80(6):2922-7. PubMed ID: 11371464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-induced protein conformational changes in the photolysis of octopus rhodopsin.
    Nakagawa M; Kikkawa S; Iwasa T; Tsuda M
    Biophys J; 1997 May; 72(5):2320-8. PubMed ID: 9129835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetics and volume changes of the intermediates in the photolysis of octopus rhodopsin at a physiological temperature.
    Nishioku Y; Nakagawa M; Tsuda M; Terazima M
    Biophys J; 2002 Aug; 83(2):1136-46. PubMed ID: 12124293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared studies of octopus rhodopsin. Existence of a long-lived intermediate and the states of the carboxylic group of Asp-81 in rhodopsin and its photoproducts.
    Masuda S; Morita EH; Tasumi M; Iwasa T; Tsuda M
    FEBS Lett; 1993 Feb; 317(3):223-7. PubMed ID: 8425608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring the conformational changes of photoactivated rhodopsin from microseconds to seconds by transient fluorescence spectroscopy.
    Hoersch D; Otto H; Wallat I; Heyn MP
    Biochemistry; 2008 Nov; 47(44):11518-27. PubMed ID: 18847221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient spectra of intermediates in the photolytic sequence of octopus rhodopsin.
    Tsuda M
    Biochim Biophys Acta; 1979 Mar; 545(3):537-46. PubMed ID: 34434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel photointermediate of octopus rhodopsin activates its G-protein.
    Nakagawa M; Kikkawa S; Tominaga K; Tsugi N; Tsuda M
    FEBS Lett; 1998 Oct; 436(2):259-62. PubMed ID: 9781691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Studies on the conformational state of the chromophore group (11-cis-retinal) in rhodopsin by computer molecular simulation methods].
    Fel'dman TB; Kholmurodov KhT; Ostrovskiĭ MA; Khrenova MG; Nemukhin AV
    Biofizika; 2009; 54(4):660-7. PubMed ID: 19795787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoreversal kinetics of the I1 and I2 intermediates in the photocycle of photoactive yellow protein by double flash experiments with variable time delay.
    Joshi CP; Borucki B; Otto H; Meyer TE; Cusanovich MA; Heyn MP
    Biochemistry; 2005 Jan; 44(2):656-65. PubMed ID: 15641791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural changes in lumirhodopsin and metarhodopsin I studied by their photoreactions at 77 K.
    Furutani Y; Kandori H; Shichida Y
    Biochemistry; 2003 Jul; 42(28):8494-500. PubMed ID: 12859195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum efficiencies of the reversible photoreaction of octopus rhodopsin.
    Dixon SF; Cooper A
    Photochem Photobiol; 1987 Jul; 46(1):115-9. PubMed ID: 3615630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Octopus photoreceptor membranes. Surface charge density and pK of the Schiff base of the pigments.
    Koutalos Y; Ebrey TG; Gilson HR; Honig B
    Biophys J; 1990 Aug; 58(2):493-501. PubMed ID: 2207250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level.
    Andruniów T; Ferré N; Olivucci M
    Proc Natl Acad Sci U S A; 2004 Dec; 101(52):17908-13. PubMed ID: 15604139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser-induced transient grating analysis of dynamics of interaction between sensory rhodopsin II D75N and the HtrII transducer.
    Inoue K; Sasaki J; Spudich JL; Terazima M
    Biophys J; 2007 Mar; 92(6):2028-40. PubMed ID: 17189313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin-labeling analysis of structure and dynamics in octopus rhodopsin.
    Steinhoff HJ; Schwemer J
    J Photochem Photobiol B; 1996 Aug; 35(1-2):1-6. PubMed ID: 8823930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Molecular mechanisms of photoreception. IV. Photoregeneration of rhodopsin from metarhodopsin II using the artificial lipid membrane method for detection of intermediate steps of this reaction].
    Orlov NIa; Fesenko EE
    Mol Biol (Mosk); 1981; 15(6):1276-85. PubMed ID: 7322116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-induced conformational change of octopus rhodopsin as detected by a spin label method.
    Kusumi A; Ohnishi S; Tsuda M
    Biochem Biophys Res Commun; 1980 Aug; 95(4):1635-41. PubMed ID: 7417337
    [No Abstract]   [Full Text] [Related]  

  • 19. Volume and enthalpy changes after photoexcitation of bovine rhodopsin: laser-induced optoacoustic studies.
    Strassburger JM; Gärtner W; Braslavsky SE
    Biophys J; 1997 May; 72(5):2294-303. PubMed ID: 9129833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-resolved spectroscopy of the early photolysis intermediates of rhodopsin Schiff base counterion mutants.
    Jäger S; Lewis JW; Zvyaga TA; Szundi I; Sakmar TP; Kliger DS
    Biochemistry; 1997 Feb; 36(8):1999-2009. PubMed ID: 9047297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.