These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 17325413)

  • 1. Electrical properties of retinal-electrode interface.
    Shah S; Hines A; Zhou D; Greenberg RJ; Humayun MS; Weiland JD
    J Neural Eng; 2007 Mar; 4(1):S24-9. PubMed ID: 17325413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedance-based retinal contact imaging as an aid for the placement of high resolution epiretinal prostheses.
    Johnson L; Scribner D; Skeath P; Klein R; Ilg D; Perkins K; Helfgott M; Sanders R; Panigrahi D
    J Neural Eng; 2007 Mar; 4(1):S17-23. PubMed ID: 17325412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new approach towards a minimal invasive retina implant.
    Gerding H
    J Neural Eng; 2007 Mar; 4(1):S30-7. PubMed ID: 17325414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perceptual thresholds and electrode impedance in three retinal prosthesis subjects.
    Mahadevappa M; Weiland JD; Yanai D; Fine I; Greenberg RJ; Humayun MS
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):201-6. PubMed ID: 16003900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs.
    Majji AB; Humayun MS; Weiland JD; Suzuki S; D'Anna SA; de Juan E
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in vitro model for investigating impedance changes with cell growth and electrical stimulation: implications for cochlear implants.
    Newbold C; Richardson R; Huang CQ; Milojevic D; Cowan R; Shepherd R
    J Neural Eng; 2004 Dec; 1(4):218-27. PubMed ID: 15876642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an extraocular retinal prosthesis: evaluation of stimulation parameters in the cat.
    Chowdhury V; Morley JW; Coroneo MT
    J Clin Neurosci; 2008 Aug; 15(8):900-6. PubMed ID: 18586497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impedance as a method to sense proximity at the electrode-retina interface.
    Ray A; Chan LL; Gonzalez A; Humayun MS; Weiland JD
    IEEE Trans Neural Syst Rehabil Eng; 2011 Dec; 19(6):696-9. PubMed ID: 21984523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulations to study spatial extent of stimulation and effect of electrode-tissue gap in subretinal implants.
    Kasi H; Bertsch A; Guyomard JL; Kolomiets B; Picaud S; Pelizzone M; Renaud P
    Med Eng Phys; 2011 Jul; 33(6):755-63. PubMed ID: 21354850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective electrode configuration for selective stimulation with inner eye prostheses.
    Rattay F; Resatz S
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1659-64. PubMed ID: 15376514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implantation and testing of subretinal film electrodes in domestic pigs.
    Schanze T; Sachs HG; Wiesenack C; Brunner U; Sailer H
    Exp Eye Res; 2006 Feb; 82(2):332-40. PubMed ID: 16125172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Focal activation of the feline retina via a suprachoroidal electrode array.
    Wong YT; Chen SC; Seo JM; Morley JW; Lovell NH; Suaning GJ
    Vision Res; 2009 Mar; 49(8):825-33. PubMed ID: 19272402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development.
    Sachs HG; Schanze T; Brunner U; Sailer H; Wiesenack C
    J Neural Eng; 2005 Mar; 2(1):S57-64. PubMed ID: 15876656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sites of neuronal excitation by epiretinal electrical stimulation.
    Schiefer MA; Grill WM
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):5-13. PubMed ID: 16562626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Access resistance of stimulation electrodes as a function of electrode proximity to the retina.
    Majdi JA; Minnikanti S; Peixoto N; Agrawal A; Cohen ED
    J Neural Eng; 2015 Feb; 12(1):016006. PubMed ID: 25474329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of intra-cochlear electrodes and tissue interface by electrochemical impedance methods in vivo.
    Duan YY; Clark GM; Cowan RS
    Biomaterials; 2004 Aug; 25(17):3813-28. PubMed ID: 15020157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element modeling of retinal prosthesis mechanics.
    Basinger BC; Rowley AP; Chen K; Humayun MS; Weiland JD
    J Neural Eng; 2009 Oct; 6(5):055006. PubMed ID: 19721183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrode-tissues interface: modeling and experimental validation.
    Sawan M; Laaziri Y; Mounaim F; Elzayat E; Corcos J; Elhilali MM
    Biomed Mater; 2007 Mar; 2(1):S7-S15. PubMed ID: 18458423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants.
    Wilke RG; Moghadam GK; Lovell NH; Suaning GJ; Dokos S
    J Neural Eng; 2011 Aug; 8(4):046016. PubMed ID: 21673395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.