These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 17326227)

  • 1. Biomaterials for orthopedics: a roughness analysis by atomic force microscopy.
    Covani U; Giacomelli L; Krajewski A; Ravaglioli A; Spotorno L; Loria P; Das S; Nicolini C
    J Biomed Mater Res A; 2007 Sep; 82(3):723-30. PubMed ID: 17326227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AFM analysis of anisotropic dissolution in dense hydroxyapatite.
    Seo DS; Lee JK
    Ultramicroscopy; 2008 Sep; 108(10):1157-62. PubMed ID: 18617329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Looking at the micro-topography of polished and blasted Ti-based biomaterials using atomic force microscopy and contact angle goniometry.
    Méndez-Vilas A; Donoso MG; González-Carrasco JL; González-Martín ML
    Colloids Surf B Biointerfaces; 2006 Oct; 52(2):157-66. PubMed ID: 16782313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. White light scanning interferometry adapted for large-area optical analysis of thick and rough hydroxyapatite layers.
    Pecheva E; Montgomery P; Montaner D; Pramatarova L
    Langmuir; 2007 Mar; 23(7):3912-8. PubMed ID: 17295521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimisation of the hydrogen peroxide pre-treatment of titanium: surface characterisation and protein adsorption.
    Nagassa ME; Daw AE; Rowe WG; Carley A; Thomas DW; Moseley R
    Clin Oral Implants Res; 2008 Dec; 19(12):1317-26. PubMed ID: 19040449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of surface roughness parameters to changes in the density of scanning points in multi-scale AFM studies. Application to a biomaterial surface.
    Méndez-Vilas A; Bruque JM; González-Martín ML
    Ultramicroscopy; 2007 Aug; 107(8):617-25. PubMed ID: 17292550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of fibronectin adsorption on TiO2 surfaces.
    Sousa SR; Brás MM; Moradas-Ferreira P; Barbosa MA
    Langmuir; 2007 Jun; 23(13):7046-54. PubMed ID: 17508764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of supramicron roughness characteristics produced by 1- and 2-step acid etching on the osseointegration capability of titanium.
    Att W; Tsukimura N; Suzuki T; Ogawa T
    Int J Oral Maxillofac Implants; 2007; 22(5):719-28. PubMed ID: 17974105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation?
    Cai K; Bossert J; Jandt KD
    Colloids Surf B Biointerfaces; 2006 May; 49(2):136-44. PubMed ID: 16621470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of human plasma proteins to modified titanium surfaces.
    Sela MN; Badihi L; Rosen G; Steinberg D; Kohavi D
    Clin Oral Implants Res; 2007 Oct; 18(5):630-8. PubMed ID: 17484735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of few-asperity contacts in adhesion.
    Thoreson EJ; Martin J; Burnham NA
    J Colloid Interface Sci; 2006 Jun; 298(1):94-101. PubMed ID: 16376923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological performance of chemical hydroxyapatite coating associated with implant surface modification by laser beam: biomechanical study in rabbit tibias.
    Faeda RS; Tavares HS; Sartori R; Guastaldi AC; Marcantonio E
    J Oral Maxillofac Surg; 2009 Aug; 67(8):1706-15. PubMed ID: 19615586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel sphene coatings on Ti-6Al-4V for orthopedic implants using sol-gel method.
    Wu C; Ramaswamy Y; Gale D; Yang W; Xiao K; Zhang L; Yin Y; Zreiqat H
    Acta Biomater; 2008 May; 4(3):569-76. PubMed ID: 18182336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of surface micro-roughness alterations in human spermatozoa using atomic force microscopy.
    Kumar S; Chaudhury K; Sen P; Guha SK
    J Microsc; 2007 Aug; 227(Pt 2):118-23. PubMed ID: 17845707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of the interactions between collagen and the surface of a bioactive glass during in vitro test.
    Oréfice R; Hench L; Brennan A
    J Biomed Mater Res A; 2009 Jul; 90(1):114-20. PubMed ID: 18491395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of silicone surface roughness and hydrophobicity on adhesion and colonization of Staphylococcus epidermidis.
    Tang H; Cao T; Liang X; Wang A; Salley SO; McAllister J; Ng KY
    J Biomed Mater Res A; 2009 Feb; 88(2):454-63. PubMed ID: 18306290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in vitro comparison of possibly bioactive titanium implant surfaces.
    Göransson A; Arvidsson A; Currie F; Franke-Stenport V; Kjellin P; Mustafa K; Sul YT; Wennerberg A
    J Biomed Mater Res A; 2009 Mar; 88(4):1037-47. PubMed ID: 18404711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vitro and in vivo evaluation of bioactive titanium implants following sodium removal treatment.
    Fawzy AS; Amer MA
    Dent Mater; 2009 Jan; 25(1):48-57. PubMed ID: 18585776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlations between the in vitro and in vivo bioactivity of the Ti/HA composites fabricated by a powder metallurgy method.
    Ning C; Zhou Y
    Acta Biomater; 2008 Nov; 4(6):1944-52. PubMed ID: 18502711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.