These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17326680)

  • 1. Coating electrospun collagen and gelatin fibers with perlecan domain I for increased growth factor binding.
    Casper CL; Yang W; Farach-Carson MC; Rabolt JF
    Biomacromolecules; 2007 Apr; 8(4):1116-23. PubMed ID: 17326680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perlecan domain I promotes fibroblast growth factor 2 delivery in collagen I fibril scaffolds.
    Yang WD; Gomes RR; Alicknavitch M; Farach-Carson MC; Carson DD
    Tissue Eng; 2005; 11(1-2):76-89. PubMed ID: 15738663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun protein fibers as matrices for tissue engineering.
    Li M; Mondrinos MJ; Gandhi MR; Ko FK; Weiss AS; Lelkes PI
    Biomaterials; 2005 Oct; 26(30):5999-6008. PubMed ID: 15894371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin.
    Sisson K; Zhang C; Farach-Carson MC; Chase DB; Rabolt JF
    J Biomed Mater Res A; 2010 Sep; 94(4):1312-20. PubMed ID: 20694999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heparan and chondroitin sulfate on growth plate perlecan mediate binding and delivery of FGF-2 to FGF receptors.
    Smith SM; West LA; Govindraj P; Zhang X; Ornitz DM; Hassell JR
    Matrix Biol; 2007 Apr; 26(3):175-84. PubMed ID: 17169545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C3A cell behaviors on micropatterned chitosan collagen gelatin membranes.
    Yu BY; Chou PH; Chen CA; Sun YM; Kung SS
    J Biomater Appl; 2007 Nov; 22(3):255-74. PubMed ID: 17494968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-functional electrospun poly(2-hydroxyethyl methacrylate).
    Zhang B; Lalani R; Cheng F; Liu Q; Liu L
    J Biomed Mater Res A; 2011 Dec; 99(3):455-66. PubMed ID: 21887741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of FGF-2 binding to chondrocytes from the developing growth plate by perlecan.
    Govindraj P; West L; Smith S; Hassell JR
    Matrix Biol; 2006 May; 25(4):232-9. PubMed ID: 16481152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu.
    Kerever A; Schnack J; Vellinga D; Ichikawa N; Moon C; Arikawa-Hirasawa E; Efird JT; Mercier F
    Stem Cells; 2007 Sep; 25(9):2146-57. PubMed ID: 17569787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Denatured collagen as support for a FGF-2 delivery system: physicochemical characterizations and in vitro release kinetics and bioactivity.
    Côté MF; Laroche G; Gagnon E; Chevallier P; Doillon CJ
    Biomaterials; 2004 Aug; 25(17):3761-72. PubMed ID: 15020152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of electrospun polystyrene scaffolds for three-dimensional in vitro biological studies.
    Baker SC; Atkin N; Gunning PA; Granville N; Wilson K; Wilson D; Southgate J
    Biomaterials; 2006 Jun; 27(16):3136-46. PubMed ID: 16473404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration.
    Thomas V; Zhang X; Catledge SA; Vohra YK
    Biomed Mater; 2007 Dec; 2(4):224-32. PubMed ID: 18458479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biofunctionalization of electrospun PCL-based scaffolds with perlecan domain IV peptide to create a 3-D pharmacokinetic cancer model.
    Hartman O; Zhang C; Adams EL; Farach-Carson MC; Petrelli NJ; Chase BD; Rabolt JF
    Biomaterials; 2010 Jul; 31(21):5700-18. PubMed ID: 20417554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the controlled-released basic fibroblast growth factor from chitosan-gelatin microspheres on human fibroblasts cultured on a chitosan-gelatin scaffold.
    Liu H; Fan H; Cui Y; Chen Y; Yao K; Goh JC
    Biomacromolecules; 2007 May; 8(5):1446-55. PubMed ID: 17375950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and properties of the electrospun polylactide/silk fibroin-gelatin composite tubular scaffold.
    Wang S; Zhang Y; Wang H; Yin G; Dong Z
    Biomacromolecules; 2009 Aug; 10(8):2240-4. PubMed ID: 19722559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun gelatin/poly(L-lactide-co-epsilon-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds.
    Jeong SI; Lee AY; Lee YM; Shin H
    J Biomater Sci Polym Ed; 2008; 19(3):339-57. PubMed ID: 18325235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrospinning: applications in drug delivery and tissue engineering.
    Sill TJ; von Recum HA
    Biomaterials; 2008 May; 29(13):1989-2006. PubMed ID: 18281090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering.
    Zhu X; Cui W; Li X; Jin Y
    Biomacromolecules; 2008 Jul; 9(7):1795-801. PubMed ID: 18578495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications.
    Lin YC; Tan FJ; Marra KG; Jan SS; Liu DC
    Acta Biomater; 2009 Sep; 5(7):2591-600. PubMed ID: 19427824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering.
    Gupta D; Venugopal J; Prabhakaran MP; Dev VR; Low S; Choon AT; Ramakrishna S
    Acta Biomater; 2009 Sep; 5(7):2560-9. PubMed ID: 19269270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.