These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17326820)

  • 1. A network perspective on the evolution of metabolism by gene duplication.
    Díaz-Mejía JJ; Pérez-Rueda E; Segovia L
    Genome Biol; 2007; 8(2):R26. PubMed ID: 17326820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extensive divergence in alternative splicing patterns after gene and genome duplication during the evolutionary history of Arabidopsis.
    Zhang PG; Huang SZ; Pin AL; Adams KL
    Mol Biol Evol; 2010 Jul; 27(7):1686-97. PubMed ID: 20185454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of Cis-Regulatory Elements and Regulatory Networks in Duplicated Genes of Arabidopsis.
    Arsovski AA; Pradinuk J; Guo XQ; Wang S; Adams KL
    Plant Physiol; 2015 Dec; 169(4):2982-91. PubMed ID: 26474639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary dynamics and functional specialization of plant paralogs formed by whole and small-scale genome duplications.
    Carretero-Paulet L; Fares MA
    Mol Biol Evol; 2012 Nov; 29(11):3541-51. PubMed ID: 22734049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A scale of functional divergence for yeast duplicated genes revealed from analysis of the protein-protein interaction network.
    Baudot A; Jacq B; Brun C
    Genome Biol; 2004; 5(10):R76. PubMed ID: 15461795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retention of protein complex membership by ancient duplicated gene products in budding yeast.
    Musso G; Zhang Z; Emili A
    Trends Genet; 2007 Jun; 23(6):266-9. PubMed ID: 17428571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Not born equal: increased rate asymmetry in relocated and retrotransposed rodent gene duplicates.
    Cusack BP; Wolfe KH
    Mol Biol Evol; 2007 Mar; 24(3):679-86. PubMed ID: 17179139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the molecular correlates modulating functional compensation between monogenic and polygenic disease gene duplicates in human.
    Podder S; Ghosh TC
    Genomics; 2011 Apr; 97(4):200-4. PubMed ID: 21281709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upstream plasticity and downstream robustness in evolution of molecular networks.
    Maslov S; Sneppen K; Eriksen KA; Yan KK
    BMC Evol Biol; 2004 Mar; 4():9. PubMed ID: 15070432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network analysis of metabolic enzyme evolution in Escherichia coli.
    Light S; Kraulis P
    BMC Bioinformatics; 2004 Feb; 5():15. PubMed ID: 15113413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical networking contributes more to genetic buffering in human and mouse metabolic pathways than does gene duplication.
    Kitami T; Nadeau JH
    Nat Genet; 2002 Sep; 32(1):191-4. PubMed ID: 12161750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast.
    Papp B; Pál C; Hurst LD
    Nature; 2004 Jun; 429(6992):661-4. PubMed ID: 15190353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative genomics as a time machine: how relative gene dosage and metabolic requirements shaped the time-dependent resolution of yeast polyploidy.
    Conant GC
    Mol Biol Evol; 2014 Dec; 31(12):3184-93. PubMed ID: 25158798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model of haplotype and phenotype in the evolution of a duplicated autoregulatory activator.
    Dasmahapatra S
    J Theor Biol; 2013 May; 325():83-102. PubMed ID: 23439299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of metabolic network structure and function on enzyme evolution.
    Vitkup D; Kharchenko P; Wagner A
    Genome Biol; 2006; 7(5):R39. PubMed ID: 16684370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Duplicated genes evolve slower than singletons despite the initial rate increase.
    Jordan IK; Wolf YI; Koonin EV
    BMC Evol Biol; 2004 Jul; 4():22. PubMed ID: 15238160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sharing of transcription factors after gene duplication in the yeast Saccharomyces cerevisiae.
    Hughes AL; Friedman R
    Genetica; 2007 Mar; 129(3):301-8. PubMed ID: 16897462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What Fraction of Duplicates Observed in Recently Sequenced Genomes Is Segregating and Destined to Fail to Fix?
    Teufel AI; Masel J; Liberles DA
    Genome Biol Evol; 2015 Jul; 7(8):2258-64. PubMed ID: 26220936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promoter evolution of mammalian gene duplicates.
    Fraimovitch E; Hagai T
    BMC Biol; 2023 Apr; 21(1):80. PubMed ID: 37055747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and asymmetric divergence of duplicate genes in the human gene coexpression network.
    Chung WY; Albert R; Albert I; Nekrutenko A; Makova KD
    BMC Bioinformatics; 2006 Jan; 7():46. PubMed ID: 16441884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.