These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 1732731)

  • 1. Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation.
    Sugawara N; Haber JE
    Mol Cell Biol; 1992 Feb; 12(2):563-75. PubMed ID: 1732731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair.
    Miyazaki T; Bressan DA; Shinohara M; Haber JE; Shinohara A
    EMBO J; 2004 Feb; 23(4):939-49. PubMed ID: 14765116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of reciprocal exchange, one-ended invasion crossover and single-strand annealing on inverted and direct repeat recombination in yeast: different requirements for the RAD1, RAD10, and RAD52 genes.
    Prado F; Aguilera A
    Genetics; 1995 Jan; 139(1):109-23. PubMed ID: 7705617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair.
    Sugawara N; Ira G; Haber JE
    Mol Cell Biol; 2000 Jul; 20(14):5300-9. PubMed ID: 10866686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus.
    Plessis A; Perrin A; Haber JE; Dujon B
    Genetics; 1992 Mar; 130(3):451-60. PubMed ID: 1551570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae.
    Ivanov EL; Sugawara N; White CI; Fabre F; Haber JE
    Mol Cell Biol; 1994 May; 14(5):3414-25. PubMed ID: 8164689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid kinetics of mismatch repair of heteroduplex DNA that is formed during recombination in yeast.
    Haber JE; Ray BL; Kolb JM; White CI
    Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3363-7. PubMed ID: 8475081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel allele of Saccharomyces cerevisiae RFA1 that is deficient in recombination and repair and suppressible by RAD52.
    Firmenich AA; Elias-Arnanz M; Berg P
    Mol Cell Biol; 1995 Mar; 15(3):1620-31. PubMed ID: 7862153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae.
    Ivanov EL; Sugawara N; Fishman-Lobell J; Haber JE
    Genetics; 1996 Mar; 142(3):693-704. PubMed ID: 8849880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae.
    Moore JK; Haber JE
    Mol Cell Biol; 1996 May; 16(5):2164-73. PubMed ID: 8628283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resection of a DNA Double-Strand Break by Alkaline Gel Electrophoresis and Southern Blotting.
    Casari E; Gobbini E; Clerici M; Longhese MP
    Methods Mol Biol; 2021; 2153():33-45. PubMed ID: 32840770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rad52 Inverse Strand Exchange Drives RNA-Templated DNA Double-Strand Break Repair.
    Mazina OM; Keskin H; Hanamshet K; Storici F; Mazin AV
    Mol Cell; 2017 Jul; 67(1):19-29.e3. PubMed ID: 28602639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aberrant double-strand break repair in rad51 mutants of Saccharomyces cerevisiae.
    Kang LE; Symington LS
    Mol Cell Biol; 2000 Dec; 20(24):9162-72. PubMed ID: 11094068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences.
    Rudin N; Haber JE
    Mol Cell Biol; 1988 Sep; 8(9):3918-28. PubMed ID: 3065627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homologous, homeologous, and illegitimate repair of double-strand breaks during transformation of a wild-type strain and a rad52 mutant strain of Saccharomyces cerevisiae.
    Mezard C; Nicolas A
    Mol Cell Biol; 1994 Feb; 14(2):1278-92. PubMed ID: 8289807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated.
    Fishman-Lobell J; Rudin N; Haber JE
    Mol Cell Biol; 1992 Mar; 12(3):1292-303. PubMed ID: 1545810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events.
    Kramer KM; Brock JA; Bloom K; Moore JK; Haber JE
    Mol Cell Biol; 1994 Feb; 14(2):1293-301. PubMed ID: 8289808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An allele of RFA1 suppresses RAD52-dependent double-strand break repair in Saccharomyces cerevisiae.
    Smith J; Rothstein R
    Genetics; 1999 Feb; 151(2):447-58. PubMed ID: 9927442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excess single-stranded DNA inhibits meiotic double-strand break repair.
    Johnson R; Borde V; Neale MJ; Bishop-Bailey A; North M; Harris S; Nicolas A; Goldman AS
    PLoS Genet; 2007 Nov; 3(11):e223. PubMed ID: 18081428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing.
    Davis AP; Symington LS
    Genetics; 2001 Oct; 159(2):515-25. PubMed ID: 11606529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.