These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 17328175)

  • 1. Relationship between pyrite Stability and arsenic mobility during aquifer storage and recovery in southwest central Florida.
    Jones GW; Pichler T
    Environ Sci Technol; 2007 Feb; 41(3):723-30. PubMed ID: 17328175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic control during aquifer storage recovery cycle tests in the Floridan Aquifer.
    Mirecki JE; Bennett MW; López-Baláez MC
    Ground Water; 2013; 51(4):539-49. PubMed ID: 23106789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic release from Floridan Aquifer rock during incubations simulating aquifer storage and recovery operations.
    Jin J; Zimmerman AR; Norton SB; Annable MD; Harris WG
    Sci Total Environ; 2016 May; 551-552():238-45. PubMed ID: 26878636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Process-based reactive transport model to quantify arsenic mobility during aquifer storage and recovery of potable water.
    Wallis I; Prommer H; Pichler T; Post V; Norton SB; Annable MD; Simmons CT
    Environ Sci Technol; 2011 Aug; 45(16):6924-31. PubMed ID: 21718078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic release from pyrite ash waste over an active hydrogeological system and its effects on water quality.
    Baragaño D; Boente C; Rodríguez-Valdés E; Fernández-Braña A; Jiménez A; Gallego JLR; González-Fernández B
    Environ Sci Pollut Res Int; 2020 Apr; 27(10):10672-10684. PubMed ID: 31950419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic release from pyrite ashes: kinetic studies.
    Lodolo A; Antonini P; Bukovec P
    Acta Chim Slov; 2013; 60(3):679-88. PubMed ID: 24169724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aquifer Storage and Recovery (ASR) for Ecosystem Restoration: Kissimmee River ASR System, Florida.
    Mirecki JE
    Ground Water; 2022 Sep; 60(5):655-661. PubMed ID: 35896478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Source of arsenic-bearing pyrite in southwestern Vermont, USA: sulfur isotope evidence.
    Mango H; Ryan P
    Sci Total Environ; 2015 Feb; 505():1331-9. PubMed ID: 24726513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of arsenic concentrations in groundwater of the Seymour Aquifer, Texas, USA.
    Hudak PF
    Int J Environ Health Res; 2008 Feb; 18(1):79-82. PubMed ID: 18231948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crossing redox boundaries--aquifer redox history and effects on iron mineralogy and arsenic availability.
    Banning A; Rüde TR; Dölling B
    J Hazard Mater; 2013 Nov; 262():905-14. PubMed ID: 23280400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.
    Rango T; Vengosh A; Dwyer G; Bianchini G
    Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extreme enrichment of arsenic and rare earth elements in acid mine drainage: Case study of Wiśniówka mining area (south-central Poland).
    Migaszewski ZM; Gałuszka A; Dołęgowska S
    Environ Pollut; 2019 Jan; 244():898-906. PubMed ID: 30469284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving arsenopyrite oxidation rate laws: implications for arsenic mobilization during aquifer storage and recovery (ASR).
    Neil CW; Jason Todd M; Jeffrey Yang Y
    Environ Geochem Health; 2018 Dec; 40(6):2453-2464. PubMed ID: 29696495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobility and natural attenuation of metals and arsenic in acidic waters of the drainage system of Timok River from Bor copper mines (Serbia) to Danube River.
    Đorđievski S; Ishiyama D; Ogawa Y; Stevanović Z
    Environ Sci Pollut Res Int; 2018 Sep; 25(25):25005-25019. PubMed ID: 29934829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking natural and anthropogenic origins of dissolved arsenic during surface and groundwater interaction in a post-closure mining context: Isotopic constraints.
    Khaska M; Le Gal La Salle C; Verdoux P; Boutin R
    J Contam Hydrol; 2015; 177-178():122-35. PubMed ID: 25899162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevated Arsenic in Private Wells of Cerro Gordo County, Iowa: Causes and Policy Changes.
    Schnoebelen DJ; Walsh S; Hernandez-Murcia OE; Fields C
    J Environ Health; 2017 May; 79(9):32-9. PubMed ID: 29154523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic in groundwaters in the Northern Appalachian Mountain belt: a review of patterns and processes.
    Peters SC
    J Contam Hydrol; 2008 Jul; 99(1-4):8-21. PubMed ID: 18571283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling Arsenic Mobilization during Managed Aquifer Recharge: The Role of Sediment Heterogeneity.
    Fakhreddine S; Prommer H; Gorelick SM; Dadakis J; Fendorf S
    Environ Sci Technol; 2020 Jul; 54(14):8728-8738. PubMed ID: 32516527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin, mobility, and temporal evolution of arsenic from a low-contamination catchment in Alpine crystalline rocks.
    Pili E; Tisserand D; Bureau S
    J Hazard Mater; 2013 Nov; 262():887-95. PubMed ID: 22819960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.