These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 17328181)

  • 1. Manganese mobilization and enrichment during soil aquifer treatment (SAT) of effluents, the Dan Region Sewage Reclamation Project (Shafdan), Israel.
    Oren O; Gavrieli I; Burg A; Guttman J; Lazar B
    Environ Sci Technol; 2007 Feb; 41(3):766-72. PubMed ID: 17328181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term nitrogen behavior under treated wastewater infiltration basins in a soil-aquifer treatment (SAT) system.
    Mienis O; Arye G
    Water Res; 2018 May; 134():192-199. PubMed ID: 29427961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manganese concentrations in Scottish groundwater.
    Homoncik SC; Macdonald AM; Heal KV; Dochartaigh BE; Ngwenya BT
    Sci Total Environ; 2010 May; 408(12):2467-73. PubMed ID: 20219236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorous retardation and breakthrough into well water in a soil-aquifer treatment (SAT) system used for large-scale wastewater reclamation.
    Lin C; Banin A
    Water Res; 2006 May; 40(8):1507-18. PubMed ID: 16616770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid process of biofiltration of secondary effluent followed by ozonation and short soil aquifer treatment for water reuse.
    Zucker I; Mamane H; Cikurel H; Jekel M; Hübner U; Avisar D
    Water Res; 2015 Nov; 84():315-22. PubMed ID: 26255129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fate and transport of carbamazepine in soil aquifer treatment (SAT) infiltration basin soils.
    Arye G; Dror I; Berkowitz B
    Chemosphere; 2011 Jan; 82(2):244-52. PubMed ID: 20947124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manganese exposure from spring and well waters in the Shenandoah Valley: interplay of aquifer lithology, soil composition, and redox conditions.
    Hinkle MAG; Ziegler B; Culbertson H; Goldmann C; Croy ME; Willis N; Ling E; Reinhart B; Lyon EC
    Environ Geochem Health; 2024 May; 46(6):203. PubMed ID: 38695991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel manganese oxidizing bacterium-Aeromonas hydrophila strain DS02: Mn(II) oxidization and biogenic Mn oxides generation.
    Zhang Y; Tang Y; Qin Z; Luo P; Ma Z; Tan M; Kang H; Huang Z
    J Hazard Mater; 2019 Apr; 367():539-545. PubMed ID: 30654278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast formation of supergene Mn oxides/hydroxides under acidic conditions in the oxic/anoxic transition zone of a shallow aquifer.
    Schäffner F; Merten D; Pollok K; Wagner S; Knoblauch S; Langenhorst F; Büchel G
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):19362-75. PubMed ID: 25822842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrification in a soil-aquifer treatment system: comparison of potential nitrification and concentration profiles in the vadose zone.
    Sopilniak A; Elkayam R; Lev O
    Environ Sci Process Impacts; 2017 Dec; 19(12):1571-1582. PubMed ID: 29192711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution and behavior of manganese in the Alto do Paranapanema Basin.
    Bonne Hernández R; Oliveira E; Espósito BP
    J Environ Monit; 2009 Jun; 11(6):1236-43. PubMed ID: 19513455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.
    Rango T; Vengosh A; Dwyer G; Bianchini G
    Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Batch and column tests of metal mobilization in soil impacted by landfill leachate.
    Di Palma L; Mecozzi R
    Waste Manag; 2010; 30(8-9):1594-9. PubMed ID: 20413290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DGGE diversity of manganese mine samples and isolation of a Lysinibacillus sp. efficient in removal of high Mn (II) concentrations.
    Tang W; Gong J; Wu L; Li Y; Zhang M; Zeng X
    Chemosphere; 2016 Dec; 165():277-283. PubMed ID: 27657820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation and sorption of atrazine, hexazinone and procymidone in coastal sand aquifer media.
    Pang L; Close M; Flintoft M
    Pest Manag Sci; 2005 Feb; 61(2):133-43. PubMed ID: 15619714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of colloids on the attenuation and transport of phosphorus in alluvial gravel aquifer and vadose zone media.
    Pang L; Lafogler M; Knorr B; McGill E; Saunders D; Baumann T; Abraham P; Close M
    Sci Total Environ; 2016 Apr; 550():60-68. PubMed ID: 26803685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrolucite fluidized-bed reactor (PFBR): a robust and compact process for removing manganese from groundwater.
    Dashtban Kenari SL; Barbeau B
    Water Res; 2014 Feb; 49():475-83. PubMed ID: 24183400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial oxidation and reduction of manganese: consequences in groundwater and applications.
    Gounot AM
    FEMS Microbiol Rev; 1994 Aug; 14(4):339-49. PubMed ID: 7917421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction of aqueous Cu-Citrate with MnO2 birnessite: characterization of Mn dissolution, oxidation products and surface interactions.
    Jefferson WA; Hu C; Liu H; Qu J
    Chemosphere; 2015 Jan; 119():1-7. PubMed ID: 25460741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.