These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 17328182)

  • 1. Sonochemical dissolution of cinnabar (alpha-HgS).
    He Z; Traina SJ; Weavers LK
    Environ Sci Technol; 2007 Feb; 41(3):773-8. PubMed ID: 17328182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sonolytic desorption of mercury from aluminum oxide: effects of pH, chloride, and organic matter.
    He Z; Traina SJ; Weavers LK
    Environ Sci Technol; 2007 Feb; 41(3):779-84. PubMed ID: 17328183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the role of re-adsorption of dissolved Hg(2+) during cinnabar dissolution using isotope tracer technique.
    Jiang P; Li Y; Liu G; Yang G; Lagos L; Yin Y; Gu B; Jiang G; Cai Y
    J Hazard Mater; 2016 Nov; 317():466-475. PubMed ID: 27322904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sonolytic desorption of mercury from aluminum oxide.
    He Z; Traina SJ; Bigham JM; Weavers LK
    Environ Sci Technol; 2005 Feb; 39(4):1037-44. PubMed ID: 15773475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of mercury in soils and attic dust in the Idrija mercury mine area (Slovenia).
    Gosar M; Sajn R; Biester H
    Sci Total Environ; 2006 Oct; 369(1-3):150-62. PubMed ID: 16764912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Investigation on dissolution of cinnabar in vitro].
    Zeng KW; Wang Q; Yang XD; Wang K
    Zhongguo Zhong Yao Za Zhi; 2007 Feb; 32(3):231-4. PubMed ID: 17432146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of silver solubility by humic acid and thiol ligands during acanthite (beta-Ag2S) dissolution.
    Jacobson AR; Martínez CE; Spagnuolo M; McBride MB; Baveye P
    Environ Pollut; 2005 May; 135(1):1-9. PubMed ID: 15701387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury speciation in the colloidal fraction of a soil polluted by a chlor-alkali plant: a case study in the South of Italy.
    Santoro A; Terzano R; Blo G; Fiore S; Mangold S; Ruggiero P
    J Synchrotron Radiat; 2010 Mar; 17(2):187-92. PubMed ID: 20157270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macroscopic and microscopic observations of particle-facilitated mercury transport from New Idria and Sulphur Bank mercury mine tailings.
    Lowry GV; Shaw S; Kim CS; Rytuba JJ; Brown GE
    Environ Sci Technol; 2004 Oct; 38(19):5101-11. PubMed ID: 15506205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbially enhanced dissolution of HgS in an acid mine drainage system in the California Coast Range.
    Jew AD; Behrens SF; Rytuba JJ; Kappler A; Spormann AM; Brown GE
    Geobiology; 2014 Jan; 12(1):20-33. PubMed ID: 24224806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Dissolution, absorption and bioaccumulation in gastrointestinal tract of mercury in HgS-containing traditional medicines Cinnabar and Zuotai].
    Zheng ZY; Li C; Zhang M; Yang HX; Geng LJ; Li LS; Du YZ; Wei LX
    Zhongguo Zhong Yao Za Zhi; 2015 Jun; 40(12):2455-60. PubMed ID: 26591542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury analysis of acid- and alkaline-reduced biological samples: identification of meta-cinnabar as the major biotransformed compound in algae.
    Kelly D; Budd K; Lefebvre DD
    Appl Environ Microbiol; 2006 Jan; 72(1):361-7. PubMed ID: 16391065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.
    Svoboda K; Hartman M; Šyc M; Pohořelý M; Kameníková P; Jeremiáš M; Durda T
    J Environ Manage; 2016 Jan; 166():499-511. PubMed ID: 26588812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of humic acid on adsorption of Hg(II) by vermiculite.
    do Nascimento FH; Masini JC
    J Environ Manage; 2014 Oct; 143():1-7. PubMed ID: 24824335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical and experimental investigations of mercury adsorption on hematite surfaces.
    Jung JE; Liguori S; Jew AD; Brown GE; Wilcox J
    J Air Waste Manag Assoc; 2018 Jan; 68(1):39-53. PubMed ID: 28829689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photochemical reactions of divalent mercury with thioglycolic acid: formation of mercuric sulfide particles.
    Si L; Ariya PA
    Chemosphere; 2015 Jan; 119():467-472. PubMed ID: 25094064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mercury methylation rates for geochemically relevant Hg(II) species in sediments.
    Jonsson S; Skyllberg U; Nilsson MB; Westlund PO; Shchukarev A; Lundberg E; Björn E
    Environ Sci Technol; 2012 Nov; 46(21):11653-9. PubMed ID: 23017152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The precipitation, growth and stability of mercury sulfide nanoparticles formed in the presence of marine dissolved organic matter.
    Mazrui NM; Seelen E; King'ondu CK; Thota S; Awino J; Rouge J; Zhao J; Mason RP
    Environ Sci Process Impacts; 2018 Apr; 20(4):642-656. PubMed ID: 29492487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of aqueous Hg(II) by mackinawite (FeS).
    Liu J; Valsaraj KT; Devai I; DeLaune RD
    J Hazard Mater; 2008 Sep; 157(2-3):432-40. PubMed ID: 18280650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial- and thiosulfate-mediated dissolution of mercury sulfide minerals and transformation to gaseous mercury.
    Vázquez-Rodríguez AI; Hansel CM; Zhang T; Lamborg CH; Santelli CM; Webb SM; Brooks SC
    Front Microbiol; 2015; 6():596. PubMed ID: 26157421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.