These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17328182)

  • 21. Isotopic variability of mercury in ore, mine-waste calcine, and leachates of mine-waste calcine from areas mined for mercury.
    Stetson SJ; Gray JE; Wanty RB; Macalady DL
    Environ Sci Technol; 2009 Oct; 43(19):7331-6. PubMed ID: 19848142
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Refining thermodynamic constants for mercury(II)-sulfides in equilibrium with metacinnabar at sub-micromolar aqueous sulfide concentrations.
    Drott A; Björn E; Bouchet S; Skyllberg U
    Environ Sci Technol; 2013 May; 47(9):4197-203. PubMed ID: 23470118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transportation and transformation of mercury in a calcine profile in the Wanshan Mercury Mine, SW China.
    Yin R; Gu C; Feng X; Zheng L; Hu N
    Environ Pollut; 2016 Dec; 219():976-981. PubMed ID: 27823859
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation of metacinnabar by milling of liquid mercury and elemental sulfur for long term mercury storage.
    López FA; López-Delgado A; Padilla I; Tayibi H; Alguacil FJ
    Sci Total Environ; 2010 Sep; 408(20):4341-5. PubMed ID: 20673963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation of cinnabar--estimation of favourable conditions in a proposed Swedish repository.
    Svensson M; Düker A; Allard B
    J Hazard Mater; 2006 Aug; 136(3):830-6. PubMed ID: 16504396
    [TBL] [Abstract][Full Text] [Related]  

  • 26. pH-Dependent Effects of L-Cysteine on Mercury Dissolution of α-HgS and β-HgS.
    Zhang M; Bi H; Li C; Du Y; Wei L
    Biol Trace Elem Res; 2018 Oct; 185(2):509-512. PubMed ID: 29376203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of the differential transport mechanism of cinnabar and mercury containing compounds.
    Wang Y; Zhou S; Ma H; Shi JS; Lu YF
    Environ Toxicol Pharmacol; 2019 Feb; 66():83-90. PubMed ID: 30639899
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes.
    Gupta A; Vidyarthi SR; Sankararamakrishnan N
    J Hazard Mater; 2014 Jun; 274():132-44. PubMed ID: 24780855
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mercury compounds characterization by thermal desorption.
    Rumayor M; Diaz-Somoano M; Lopez-Anton MA; Martinez-Tarazona MR
    Talanta; 2013 Sep; 114():318-22. PubMed ID: 23953477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sonochemical oxidation and stabilization of liquid elemental mercury in water and soil.
    Du H; Gu X; Johs A; Yin X; Spano T; Wang D; Pierce EM; Gu B
    J Hazard Mater; 2023 Mar; 445():130589. PubMed ID: 37055993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chronic mercury exposure in Late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar.
    Emslie SD; Brasso R; Patterson WP; Carlos Valera A; McKenzie A; Maria Silva A; Gleason JD; Blum JD
    Sci Rep; 2015 Oct; 5():14679. PubMed ID: 26424480
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced uptake and modified distribution of mercury(II) by fulvic acid on the muscovite (001) surface.
    Lee SS; Nagy KL; Park C; Fenter P
    Environ Sci Technol; 2009 Jul; 43(14):5295-300. PubMed ID: 19708356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of microbial communities from tropical soils on the mobilization of trace metals during dissolution of cinnabar ore.
    Balland-Bolou-Bi C; Turc B; Alphonse V; Bousserrhine N
    J Environ Sci (China); 2017 Jun; 56():122-130. PubMed ID: 28571847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mackinawite (FeS) reduces mercury(II) under sulfidic conditions.
    Bone SE; Bargar JR; Sposito G
    Environ Sci Technol; 2014 Sep; 48(18):10681-9. PubMed ID: 25180562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distribution of mercury species and mercury isotope ratios in soils and river suspended matter of a mercury mining area.
    Baptista-Salazar C; Hintelmann H; Biester H
    Environ Sci Process Impacts; 2018 Apr; 20(4):621-631. PubMed ID: 29387859
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extractability of HgS (cinnabar and metacinnabar) by hydrochloric acid.
    Mikac N; Foucher D; Niessen S; Fischer JC
    Anal Bioanal Chem; 2002 Nov; 374(6):1028-33. PubMed ID: 12458414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solving mercury (Hg) speciation in soil samples by synchrotron X-ray microspectroscopic techniques.
    Terzano R; Santoro A; Spagnuolo M; Vekemans B; Medici L; Janssens K; Göttlicher J; Denecke MA; Mangold S; Ruggiero P
    Environ Pollut; 2010 Aug; 158(8):2702-9. PubMed ID: 20605298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Similarities between inorganic sulfide and the strong Hg(II)-complexing ligands in municipal wastewater effluent.
    Hsu-Kim H; Sedlak DL
    Environ Sci Technol; 2005 Jun; 39(11):4035-41. PubMed ID: 15984780
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of chloride and sediment matrix on the extractability of HgS (cinnabar and metacinnabar) by nitric acid.
    Mikac N; Foucher D; Niessen S; Lojen S; Fischer JC
    Anal Bioanal Chem; 2003 Dec; 377(7-8):1196-201. PubMed ID: 14523607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calculation of the energetics for the oligomerization of gas phase HgO and HgS and for the solvolysis of crystalline HgO and HgS.
    Tossell JA
    J Phys Chem A; 2006 Feb; 110(7):2571-8. PubMed ID: 16480318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.