These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17328207)

  • 1. Characterization of humic acid fouled reverse osmosis and nanofiltration membranes by transmission electron microscopy and streaming potential measurements.
    Tang CY; Kwon YN; Leckie JO
    Environ Sci Technol; 2007 Feb; 41(3):942-9. PubMed ID: 17328207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane independent limiting flux for RO and NF membranes fouled by humic acid.
    Tang CY; Leckie JO
    Environ Sci Technol; 2007 Jul; 41(13):4767-73. PubMed ID: 17695927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of humic acid foulant from ultrafiltration membrane surface using photocatalytic oxidation process.
    Fang H; Sun DD; Wu M; Phay W; Tay JH
    Water Sci Technol; 2005; 51(6-7):373-80. PubMed ID: 16003999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced gypsum scaling by organic fouling layer on nanofiltration membrane: Characteristics and mechanisms.
    Wang J; Wang L; Miao R; Lv Y; Wang X; Meng X; Yang R; Zhang X
    Water Res; 2016 Mar; 91():203-13. PubMed ID: 26799710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic fouling and chemical cleaning of nanofiltration membranes: measurements and mechanisms.
    Li Q; Elimelech M
    Environ Sci Technol; 2004 Sep; 38(17):4683-93. PubMed ID: 15461180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined coagulation-disk filtration process as a pretreatment of ultrafiltration and reverse osmosis membrane for wastewater reclamation: an autopsy study of a pilot plant.
    Chon K; Kim SJ; Moon J; Cho J
    Water Res; 2012 Apr; 46(6):1803-16. PubMed ID: 22310806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Reverse osmosis membrane fouling by humic acid using XDLVO approach: effect of calcium ions].
    Yao SD; Gao XY; Guo BH; Bao N; Xie HJ; Liang S
    Huan Jing Ke Xue; 2012 Jun; 33(6):1884-90. PubMed ID: 22946170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fouling of nanofiltration, reverse osmosis, and ultrafiltration membranes by protein mixtures: the role of inter-foulant-species interaction.
    Wang YN; Tang CY
    Environ Sci Technol; 2011 Aug; 45(15):6373-9. PubMed ID: 21678956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of fouling resistant nanofiltration and reverse osmosis membranes for dyeing wastewater effluent treatment.
    Myung SW; Choi IH; Lee SH; Kim IC; Lee KH
    Water Sci Technol; 2005; 51(6-7):159-64. PubMed ID: 16003974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A physical impact of organic fouling layers on bacterial adhesion during nanofiltration.
    Heffernan R; Habimana O; Semião AJ; Cao H; Safari A; Casey E
    Water Res; 2014 Dec; 67():118-28. PubMed ID: 25265304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanofiltration membrane fouling by oppositely charged macromolecules: investigation on flux behavior, foulant mass deposition, and solute rejection.
    Wang YN; Tang CY
    Environ Sci Technol; 2011 Oct; 45(20):8941-7. PubMed ID: 21928796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of silica fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes.
    Lin YL; Chiou JH; Lee CH
    J Hazard Mater; 2014 Jul; 277():102-9. PubMed ID: 24560524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of fouling on separation performance by forward osmosis: the role of specific organic foulants.
    Zheng L; Price WE; Nghiem LD
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):33758-33769. PubMed ID: 29766436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Comparison of the effect of solution environment on humic acid removal behavior with charged and traditional neutral ultrafiltration membranes].
    Hou J; Shao JH; He YL
    Huan Jing Ke Xue; 2010 Jun; 31(6):1518-24. PubMed ID: 20698266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the effect of humic acids and phenol on adsorption-ultrafiltration process performance.
    Mozia S; Tomaszewska M; Morawski AW
    Water Res; 2005; 39(2-3):501-9. PubMed ID: 15644259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design considerations for wastewater treatment by reverse osmosis.
    Bartels CR; Wilf M; Andes K; Iong J
    Water Sci Technol; 2005; 51(6-7):473-82. PubMed ID: 16004010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of seawater reverse osmosis fouling and its relationship to pretreatment type.
    Kumar M; Adham SS; Pearce WR
    Environ Sci Technol; 2006 Mar; 40(6):2037-44. PubMed ID: 16570633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater.
    Tang CY; Fu QS; Robertson AP; Criddle CS; Leckie JO
    Environ Sci Technol; 2006 Dec; 40(23):7343-9. PubMed ID: 17180987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of humic acid rejection and flux decline during filtration with negatively charged and uncharged ultrafiltration membranes.
    Shao J; Hou J; Song H
    Water Res; 2011 Jan; 45(2):473-82. PubMed ID: 20863548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafiltration and nanofiltration membrane fouling by natural organic matter: Mechanisms and mitigation by pre-ozonation and pH.
    Yu W; Liu T; Crawshaw J; Liu T; Graham N
    Water Res; 2018 Aug; 139():353-362. PubMed ID: 29665507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.