These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 17328269)
21. Programming jammed Codman Hakim programmable valves: study of an explanted valve and successful programming in a patient. Wong ST; Wen E; Fong D J Neurosurg Pediatr; 2013 Aug; 12(2):160-5. PubMed ID: 23705870 [TBL] [Abstract][Full Text] [Related]
22. Neurofiberscope-guided management of slit-ventricle syndrome due to shunt placement. Chernov MF; Kamikawa S; Yamane F; Ishihara S; Hori T J Neurosurg; 2005 Apr; 102(3 Suppl):260-7. PubMed ID: 15881749 [TBL] [Abstract][Full Text] [Related]
23. The programmable shunt-system Codman Medos Hakim: A clinical observation study and review of literature. Nowak S; Mehdorn HM; Stark A Clin Neurol Neurosurg; 2018 Oct; 173():154-158. PubMed ID: 30142621 [TBL] [Abstract][Full Text] [Related]
24. Comparison of programmable shunt valves vs standard valves for communicating hydrocephalus of adults: a retrospective analysis of 407 patients. Ringel F; Schramm J; Meyer B Surg Neurol; 2005 Jan; 63(1):36-41; discussion 41. PubMed ID: 15639519 [TBL] [Abstract][Full Text] [Related]
25. Assessment of a quick reference table algorithm for determining initial postoperative pressure settings of programmable pressure valves in patients with idiopathic normal pressure hydrocephalus: SINPHONI subanalysis. Miyake H; Kajimoto Y; Murai H; Nomura S; Ono S; Okamoto Y; Sumi Y Neurosurgery; 2012 Sep; 71(3):722-8; discussion 728. PubMed ID: 22653392 [TBL] [Abstract][Full Text] [Related]
26. Outcome analysis of initial neonatal shunts: does the valve make a difference? Robinson S; Kaufman BA; Park TS Pediatr Neurosurg; 2002 Dec; 37(6):287-94. PubMed ID: 12422042 [TBL] [Abstract][Full Text] [Related]
27. Congenital hydrocephalus and ventriculoperitoneal shunts: influence of etiology and programmable shunts on revisions. Notarianni C; Vannemreddy P; Caldito G; Bollam P; Wylen E; Willis B; Nanda A J Neurosurg Pediatr; 2009 Dec; 4(6):547-52. PubMed ID: 19951042 [TBL] [Abstract][Full Text] [Related]
29. A clinical audit of the Hakim programmable valve in patients with complex hydrocephalus. Kay AD; Fisher AJ; O'Kane C; Richards HK; Pickard JD; Br J Neurosurg; 2000 Dec; 14(6):535-42. PubMed ID: 11272031 [TBL] [Abstract][Full Text] [Related]
30. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme. Czosnyka Z; Czosnyka M; Richards HK; Pickard JD Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485 [TBL] [Abstract][Full Text] [Related]
31. Do adjustable shunt valves pressure our budget? A retrospective analysis of 541 implanted Codman Hakim programmable valves. Zemack G; Romner B Br J Neurosurg; 2001 Jun; 15(3):221-7. PubMed ID: 11478056 [TBL] [Abstract][Full Text] [Related]
32. The Medos Hakim programmable valve in the treatment of pediatric hydrocephalus. Reinprecht A; Dietrich W; Bertalanffy A; Czech T Childs Nerv Syst; 1997; 13(11-12):588-93; discussion 593-4. PubMed ID: 9454974 [TBL] [Abstract][Full Text] [Related]
33. Clinical experience with the use of a shunt with an adjustable valve in children with hydrocephalus. Zemack G; Bellner J; Siesjö P; Strömblad LG; Romner B J Neurosurg; 2003 Mar; 98(3):471-6. PubMed ID: 12650416 [TBL] [Abstract][Full Text] [Related]
34. The Hakim programmable valve: reasons for reprogramming failures. Mauer UM; Schuler J; Kunz U J Neurosurg; 2007 Oct; 107(4):788-91. PubMed ID: 17937224 [TBL] [Abstract][Full Text] [Related]
35. PROSAIKA: a prospective multicenter registry with the first programmable gravitational device for hydrocephalus shunting. Kehler U; Kiefer M; Eymann R; Wagner W; Tschan CA; Langer N; Rohde V; Ludwig HC; Gliemroth J; Meier U; Lemcke J; Thomale UW; Fritsch M; Krauss JK; Mirzayan MJ; Schuhmann M; Huthmann A Clin Neurol Neurosurg; 2015 Oct; 137():132-6. PubMed ID: 26196478 [TBL] [Abstract][Full Text] [Related]
36. Patients benefit from low-pressure settings enabled by gravitational valves in normal pressure hydrocephalus. Freimann FB; Vajkoczy P; Sprung C Clin Neurol Neurosurg; 2013 Oct; 115(10):1982-6. PubMed ID: 23831048 [TBL] [Abstract][Full Text] [Related]
37. In vitro performance of six combinations of adjustable differential pressure valves and fixed anti-siphon devices with and without vertical motion. Fiss I; Röhrig P; Hore N; von der Brelie C; Bettag C; Freimann FB; Thomale UW; Rohde V; Brandner S Acta Neurochir (Wien); 2020 Oct; 162(10):2421-2430. PubMed ID: 32779025 [TBL] [Abstract][Full Text] [Related]
38. Shunt Valve Rupture in Ventriculoperitoneal Shunt Failure. Güdük M; Akbaş A; Tüzünalp MA; Berikol G; Ekşi MŞ World Neurosurg; 2021 Jan; 145():73-76. PubMed ID: 32916344 [TBL] [Abstract][Full Text] [Related]
39. Occult cerebrospinal fluid fistula between ventricle and extra-ventricular position of the ventriculoperitoneal shunt tip. Lee CY; Wu CT; Lin KL; Hsu HH Acta Neurol Taiwan; 2011 Sep; 20(3):197-201. PubMed ID: 22009124 [TBL] [Abstract][Full Text] [Related]
40. Gravitational shunt units may cause under-drainage in bedridden patients. Kaestner S; Kruschat T; Nitzsche N; Deinsberger W Acta Neurochir (Wien); 2009 Mar; 151(3):217-21; discussion 221. PubMed ID: 19238319 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]