BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 17328432)

  • 1. The physical origin of large covalent-ionic resonance energies in some two-electron bonds.
    Hiberty PC; Ramozzi R; Song L; Wu W; Shaik S
    Faraday Discuss; 2007; 135():261-72; discussion 367-401, 503-6. PubMed ID: 17328432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge-shift bonding--a class of electron-pair bonds that emerges from valence bond theory and is supported by the electron localization function approach.
    Shaik S; Danovich D; Silvi B; Lauvergnat DL; Hiberty PC
    Chemistry; 2005 Oct; 11(21):6358-71. PubMed ID: 16086335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the nature of electron-pair bonds: an energy decomposition analysis perspective.
    Zhang Y; Wu X; Su P; Wu W
    J Phys Condens Matter; 2022 May; 34(29):. PubMed ID: 35487208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge-shift bonding and its manifestations in chemistry.
    Shaik S; Danovich D; Wu W; Hiberty PC
    Nat Chem; 2009 Sep; 1(6):443-9. PubMed ID: 21378912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An excursion from normal to inverted C-C bonds shows a clear demarcation between covalent and charge-shift C-C bonds.
    Shaik S; Chen Z; Wu W; Stanger A; Danovich D; Hiberty PC
    Chemphyschem; 2009 Oct; 10(15):2658-69. PubMed ID: 19823998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topology of electron charge density for chemical bonds from valence bond theory: a probe of bonding types.
    Zhang L; Ying F; Wu W; Hiberty PC; Shaik S
    Chemistry; 2009; 15(12):2979-89. PubMed ID: 19191241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterolytic bond dissociation in water: why is it so easy for C4H9Cl but not for C3H9SiCl?
    Su P; Song L; Wu W; Shaik S; Hiberty PC
    J Phys Chem A; 2008 Apr; 112(13):2988-97. PubMed ID: 18331015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge-Shift Corrected Electronegativities and the Effect of Bond Polarity and Substituents on Covalent-Ionic Resonance Energy.
    James AM; Laconsay CJ; Galbraith JM
    J Phys Chem A; 2017 Jul; 121(27):5190-5195. PubMed ID: 28636364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge-Shift Bonding: A New and Unique Form of Bonding.
    Shaik S; Danovich D; Galbraith JM; Braïda B; Wu W; Hiberty PC
    Angew Chem Int Ed Engl; 2020 Jan; 59(3):984-1001. PubMed ID: 31476104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Barriers of hydrogen abstraction vs halogen exchange: an experimental manifestation of charge-shift bonding.
    Hiberty PC; Megret C; Song L; Wu W; Shaik S
    J Am Chem Soc; 2006 Mar; 128(9):2836-43. PubMed ID: 16506761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nature of the chemical bond revisited: an energy-partitioning analysis of nonpolar bonds.
    Kovács A; Esterhuysen C; Frenking G
    Chemistry; 2005 Mar; 11(6):1813-25. PubMed ID: 15672434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pi bonding in second and third row molecules: testing the strength of Linus's blanket.
    Galbraith JM; Blank E; Shaik S; Hiberty PC
    Chemistry; 2000 Jul; 6(13):2425-34. PubMed ID: 10939744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge-Shift Bonding Emerges as a Distinct Electron-Pair Bonding Family from Both Valence Bond and Molecular Orbital Theories.
    Zhang H; Danovich D; Wu W; Braïda B; Hiberty PC; Shaik S
    J Chem Theory Comput; 2014 Jun; 10(6):2410-8. PubMed ID: 26580761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the physical origin of the cation-anion intermediate bond in ionic liquids Part I. Placing a (weak) hydrogen bond between two charges.
    Lehmann SB; Roatsch M; Schöppke M; Kirchner B
    Phys Chem Chem Phys; 2010 Jul; 12(27):7473-86. PubMed ID: 20532355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen bonding in ionic liquids.
    Hunt PA; Ashworth CR; Matthews RP
    Chem Soc Rev; 2015 Mar; 44(5):1257-88. PubMed ID: 25582457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of reductive eliminations in square planar Pd(II) complexes: nature of eliminated bonds and role of trans influence.
    Sajith PK; Suresh CH
    Inorg Chem; 2011 Sep; 50(17):8085-93. PubMed ID: 21805956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the nature of the chemical bond in valence bond theory.
    Shaik S; Danovich D; Hiberty PC
    J Chem Phys; 2022 Sep; 157(9):090901. PubMed ID: 36075734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genuine quadruple bonds between two main-group atoms. Chemical bonding in AeF
    Liu R; Qin L; Zhang Z; Zhao L; Sagan F; Mitoraj M; Frenking G
    Chem Sci; 2023 May; 14(18):4872-4887. PubMed ID: 37181783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical, thermodynamic, spectroscopic, and structural studies of the consequences of one-electron oxidation on the Fe-X bonds in 17- and 18-electron Cp*Fe(dppe)X complexes (X = F, Cl, Br, I, H, CH3).
    Tilset M; Fjeldahl I; Hamon JR; Hamon P; Toupet L; Saillard JY; Costuas K; Haynes A
    J Am Chem Soc; 2001 Oct; 123(41):9984-10000. PubMed ID: 11592877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Nature of the Idealized Triple Bonds Between Principal Elements and the σ Origins of Trans-Bent Geometries-A Valence Bond Study.
    Ploshnik E; Danovich D; Hiberty PC; Shaik S
    J Chem Theory Comput; 2011 Apr; 7(4):955-68. PubMed ID: 26606345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.