These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17328626)

  • 1. Simulation of the effect of surface-oxide formation on bistability in CO oxidation on Pt-group metals.
    Zhdanov VP
    J Chem Phys; 2007 Feb; 126(7):074706. PubMed ID: 17328626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of methane oxidation on Pt.
    Zhdanov VP; Carlsson PA; Kasemo B
    J Chem Phys; 2007 Jun; 126(23):234705. PubMed ID: 17600433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of CO oxidation on high-concentration phases of atomic oxygen on Pt(111).
    Gerrard AL; Weaver JF
    J Chem Phys; 2005 Dec; 123(22):224703. PubMed ID: 16375491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Screening by kinetic Monte Carlo simulation of Pt-Au(100) surfaces for the steady-state decomposition of nitric oxide in excess dioxygen.
    Kieken LD; Neurock M; Mei D
    J Phys Chem B; 2005 Feb; 109(6):2234-44. PubMed ID: 16851216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic study of the "surface explosion" phenomenon in the NO+CO reaction on Pt(100) through dynamic Monte Carlo simulation.
    Alas SJ; Vicente L
    J Chem Phys; 2008 Apr; 128(13):134705. PubMed ID: 18397092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic oxidation activity of Pt3O4 surfaces and thin films.
    Seriani N; Pompe W; Ciacchi LC
    J Phys Chem B; 2006 Aug; 110(30):14860-9. PubMed ID: 16869596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of oscillations and pattern formation in the NO + CO reaction on Pt(100) surfaces through dynamic Monte Carlo simulation: toward a realistic model.
    Alas SJ; Zgrablich G
    J Phys Chem B; 2006 May; 110(19):9499-510. PubMed ID: 16686496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The internal energy of CO2 produced by the catalytic oxidation of CH3OH by O2 on polycrystalline platinum.
    Peng TL; Bernasek SL
    J Chem Phys; 2009 Oct; 131(15):154701. PubMed ID: 20568874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of stoichiometry and charge state on the structure and reactivity of cobalt oxide clusters with CO.
    Johnson GE; Reveles JU; Reilly NM; Tyo EC; Khanna SN; Castleman AW
    J Phys Chem A; 2008 Nov; 112(45):11330-40. PubMed ID: 18855367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient CO oxidation at low temperature on Au(111).
    Min BK; Alemozafar AR; Pinnaduwage D; Deng X; Friend CM
    J Phys Chem B; 2006 Oct; 110(40):19833-8. PubMed ID: 17020368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen production from a combination of the water-gas shift and redox cycle process of methane partial oxidation via lattice oxygen over LaFeO3 perovskite catalyst.
    Dai XP; Wu Q; Li RJ; Yu CC; Hao ZP
    J Phys Chem B; 2006 Dec; 110(51):25856-62. PubMed ID: 17181232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ oxidation study of Pt(110) and its interaction with CO.
    Butcher DR; Grass ME; Zeng Z; Aksoy F; Bluhm H; Li WX; Mun BS; Somorjai GA; Liu Z
    J Am Chem Soc; 2011 Dec; 133(50):20319-25. PubMed ID: 22070406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle size dependent adsorption and reaction kinetics on reduced and partially oxidized Pd nanoparticles.
    Schalow T; Brandt B; Starr DE; Laurin M; Shaikhutdinov SK; Schauermann S; Libuda J; Freund HJ
    Phys Chem Chem Phys; 2007 Mar; 9(11):1347-61. PubMed ID: 17347708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomistic lattice-gas modeling of CO oxidation on Pd(100): temperature-programmed spectroscopy and steady-state behavior.
    Liu DJ; Evans JW
    J Chem Phys; 2006 Apr; 124(15):154705. PubMed ID: 16674249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics of hydrogen dissociation on an oxygen covered Pt(111) surface.
    Ludwig J; Vlachos DG
    J Chem Phys; 2008 Apr; 128(15):154708. PubMed ID: 18433259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural requirements and reaction pathways in dimethyl ether combustion catalyzed by supported Pt clusters.
    Ishikawa A; Neurock M; Iglesia E
    J Am Chem Soc; 2007 Oct; 129(43):13201-12. PubMed ID: 17915866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study of pattern formation during the catalytic oxidation of CO on Pt{100} at low pressures.
    Anghel AT; Hoyle RB; Irurzun IM; Proctor MR; King DA
    J Chem Phys; 2007 Oct; 127(16):164711. PubMed ID: 17979375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water desorption from an oxygen covered Pt(111) surface: multichannel desorption.
    Karlberg GS; Wahnström G; Clay C; Zimbitas G; Hodgson A
    J Chem Phys; 2006 May; 124(20):204712. PubMed ID: 16774369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO oxidation reaction on Pt(111) studied by the dynamic Monte Carlo method including lateral interactions of adsorbates.
    Nagasaka M; Kondoh H; Nakai I; Ohta T
    J Chem Phys; 2007 Jan; 126(4):044704. PubMed ID: 17286496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Monte Carlo simulation of the NO + CO reaction on Rh(111).
    Avalos LA; Bustos V; Uñac R; Zaera F; Zgrablich G
    J Phys Chem B; 2006 Dec; 110(49):24964-71. PubMed ID: 17149918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.