BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 17328687)

  • 1. Release of superoxide from skeletal muscle of adult and old mice: an experimental test of the reductive hotspot hypothesis.
    Close GL; Kayani AC; Ashton T; McArdle A; Jackson MJ
    Aging Cell; 2007 Apr; 6(2):189-95. PubMed ID: 17328687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity.
    Vasilaki A; Mansouri A; Van Remmen H; van der Meulen JH; Larkin L; Richardson AG; McArdle A; Faulkner JA; Jackson MJ
    Aging Cell; 2006 Apr; 5(2):109-17. PubMed ID: 16626390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Markers of oxidative stress in the skeletal muscle of patients on haemodialysis.
    Crowe AV; McArdle A; McArdle F; Pattwell DM; Bell GM; Kemp GJ; Bone JM; Griffiths RD; Jackson MJ
    Nephrol Dial Transplant; 2007 Apr; 22(4):1177-83. PubMed ID: 17213227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive responses of mouse skeletal muscle to contractile activity: The effect of age.
    Vasilaki A; McArdle F; Iwanejko LM; McArdle A
    Mech Ageing Dev; 2006 Nov; 127(11):830-9. PubMed ID: 16996110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of in vivo microdialysis techniques to detect extracellular ROS in resting and contracting skeletal muscle.
    Close GL; Jackson MJ
    Methods Mol Biol; 2008; 477():123-36. PubMed ID: 19082944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro nicotine-induced oxidative stress in mice peritoneal macrophages: a dose-dependent approach.
    Mahapatra SK; Das S; Bhattacharjee S; Gautam N; Majumdar S; Roy S
    Toxicol Mech Methods; 2009 Feb; 19(2):100-8. PubMed ID: 19778253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in mitochondrial function, hydrogen peroxide release and oxidative damage in mouse hind-limb skeletal muscle during aging.
    Mansouri A; Muller FL; Liu Y; Ng R; Faulkner J; Hamilton M; Richardson A; Huang TT; Epstein CJ; Van Remmen H
    Mech Ageing Dev; 2006 Mar; 127(3):298-306. PubMed ID: 16405961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microdialysis studies of extracellular reactive oxygen species in skeletal muscle: factors influencing the reduction of cytochrome c and hydroxylation of salicylate.
    Close GL; Ashton T; McArdle A; Jackson MJ
    Free Radic Biol Med; 2005 Dec; 39(11):1460-7. PubMed ID: 16274881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular generation of reactive oxygen species by contracting skeletal muscle cells.
    McArdle F; Pattwell DM; Vasilaki A; McArdle A; Jackson MJ
    Free Radic Biol Med; 2005 Sep; 39(5):651-7. PubMed ID: 16085183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Release of reactive oxygen and nitrogen species from contracting skeletal muscle cells.
    Pattwell DM; McArdle A; Morgan JE; Patridge TA; Jackson MJ
    Free Radic Biol Med; 2004 Oct; 37(7):1064-72. PubMed ID: 15336322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of lifelong overexpression of HSP70 in skeletal muscle on age-related oxidative stress and adaptation after nondamaging contractile activity.
    Broome CS; Kayani AC; Palomero J; Dillmann WH; Mestril R; Jackson MJ; McArdle A
    FASEB J; 2006 Jul; 20(9):1549-51. PubMed ID: 16723383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of xanthine oxidase-generated extracellular superoxide on skeletal muscle force generation.
    Gomez-Cabrera MC; Close GL; Kayani A; McArdle A; ViƱa J; Jackson MJ
    Am J Physiol Regul Integr Comp Physiol; 2010 Jan; 298(1):R2-8. PubMed ID: 19828843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of release of reactive oxygen species by the contracting diaphragm.
    Stofan DA; Callahan LA; DiMARCO AF; Nethery DE; Supinski GS
    Am J Respir Crit Care Med; 2000 Mar; 161(3 Pt 1):891-8. PubMed ID: 10712339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron injections in mice increase skeletal muscle iron content, induce oxidative stress and reduce exercise performance.
    Reardon TF; Allen DG
    Exp Physiol; 2009 Jun; 94(6):720-30. PubMed ID: 19201785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrolysis stimulates creatine transport and transporter cell surface expression in incubated mouse skeletal muscle: potential role of ROS.
    Derave W; Straumann N; Olek RA; Hespel P
    Am J Physiol Endocrinol Metab; 2006 Dec; 291(6):E1250-7. PubMed ID: 16849631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free radicals generated by contracting muscle: by-products of metabolism or key regulators of muscle function?
    Jackson MJ
    Free Radic Biol Med; 2008 Jan; 44(2):132-41. PubMed ID: 18191749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palmitate increases superoxide production through mitochondrial electron transport chain and NADPH oxidase activity in skeletal muscle cells.
    Lambertucci RH; Hirabara SM; Silveira Ldos R; Levada-Pires AC; Curi R; Pithon-Curi TC
    J Cell Physiol; 2008 Sep; 216(3):796-804. PubMed ID: 18446788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox regulation of skeletal muscle.
    Jackson MJ
    IUBMB Life; 2008 Aug; 60(8):497-501. PubMed ID: 18629903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Disruption of skeletal myocytes initiates superoxide release: contribution of NADPH oxidase.
    Kerkweg U; Petrat F; Korth HG; de Groot H
    Shock; 2007 May; 27(5):552-8. PubMed ID: 17438461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential changes in superoxide production, anion carriers and substrate oxidation in skeletal muscle mitochondria of heat-stressed chickens.
    Mujahid A; Akiba Y; Warden CH; Toyomizu M
    FEBS Lett; 2007 Jul; 581(18):3461-7. PubMed ID: 17612532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.