These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 17328812)

  • 61. Deposition behavior of inhaled nanostructured TiO2 in rats: fractions of particle diameter below 100 nm (nanoscale) and the slicing bias of transmission electron microscopy.
    Morfeld P; Treumann S; Ma-Hock L; Bruch J; Landsiedel R
    Inhal Toxicol; 2012 Dec; 24(14):939-51. PubMed ID: 23216155
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Cryo-transmission electron microscopy imaging of the morphology of submicrometer aerosol containing organic acids and ammonium sulfate.
    Veghte DP; Bittner DR; Freedman MA
    Anal Chem; 2014 Mar; 86(5):2436-42. PubMed ID: 24502281
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Size distribution of chromate paint aerosol generated in a bench-scale spray booth.
    Sabty-Daily RA; Hinds WC; Froines JR
    Ann Occup Hyg; 2005 Jan; 49(1):33-45. PubMed ID: 15596421
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Generation and characterization of test atmospheres with nanomaterials.
    Ma-Hock L; Gamer AO; Landsiedel R; Leibold E; Frechen T; Sens B; Linsenbuehler M; van Ravenzwaay B
    Inhal Toxicol; 2007 Aug; 19(10):833-48. PubMed ID: 17687715
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Particle aerosol generation and potential altering in airflow used for acute/repeated inhalation toxicity testing.
    Lohse F; Wessely B; Stintz M; Nolde J; Creutzenberg O; Bruer G
    Toxicol Lett; 2024 Feb; ():. PubMed ID: 38401876
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Size-selective poorly soluble particulate reference materials for evaluation of quantitative analytical methods.
    Stefaniak AB; Turk GC; Dickerson RM; Hoover MD
    Anal Bioanal Chem; 2008 Jul; 391(6):2071-7. PubMed ID: 18224470
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Generating nano-aerosols from TiO₂ (5 nm) nanoparticles showing different agglomeration states. Application to toxicological studies.
    Noël A; Cloutier Y; Wilkinson KJ; Dion C; Hallé S; Maghni K; Tardif R; Truchon G
    J Occup Environ Hyg; 2013; 10(2):86-96. PubMed ID: 23252512
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of powder polydispersity on aerosol generation.
    Chew NY; Chan HK
    J Pharm Pharm Sci; 2002; 5(2):162-8. PubMed ID: 12207868
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Kinetic study of heterogeneous reaction of deliquesced NaCl particles with gaseous HNO3 using particle-on-substrate stagnation flow reactor approach.
    Liu Y; Cain JP; Wang H; Laskin A
    J Phys Chem A; 2007 Oct; 111(40):10026-43. PubMed ID: 17850118
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Liquid-Liquid Phase Separation in Supermicrometer and Submicrometer Aerosol Particles.
    Freedman MA
    Acc Chem Res; 2020 Jun; 53(6):1102-1110. PubMed ID: 32432453
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Dynamics of Liquid-Liquid Phase Separation in Submicrometer Aerosol.
    Kucinski TM; Ott EE; Freedman MA
    J Phys Chem A; 2021 May; 125(20):4446-4453. PubMed ID: 33999626
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Inhalation chamber with size discriminator for liquid aerosols.
    Tsuda S; Iwasaki M; Yoshida M; Shirasu Y
    Fundam Appl Toxicol; 1984 Jun; 4(3 Pt 1):378-87. PubMed ID: 6745530
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Measurement of Transport Properties of Aerosolized Nanomaterials.
    Ku BK; Kulkarni P
    J Aerosol Sci; 2015 Dec; 90():169-181. PubMed ID: 26688593
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cryogenic Aerosol Generation: Airborne Mist Particles Surrounding Liquid Nitrogen.
    Lee BU
    Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32046203
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Impact of Humidity on Silica Nanoparticle Agglomerate Morphology and Size Distribution.
    Kelesidis GA; Furrer FM; Wegner K; Pratsinis SE
    Langmuir; 2018 Jul; 34(29):8532-8541. PubMed ID: 29940739
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Comprehensive Analysis of Two H13-Type Starting Materials Used for Laser Cladding and Aerosol Particles Formed in This Process.
    Péter L; Osán J; Kugler S; Groma V; Pollastri S; Nagy A
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295431
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Particle Size Distributions.
    Finlay WH; Darquenne C
    J Aerosol Med Pulm Drug Deliv; 2020 Aug; 33(4):178-180. PubMed ID: 32598205
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Characterization of ultrafine particles emitted during laser-based additive manufacturing of metal parts.
    Noskov A; Ervik TK; Tsivilskiy I; Gilmutdinov A; Thomassen Y
    Sci Rep; 2020 Dec; 10(1):20989. PubMed ID: 33268812
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effect of Drying Rate on Aerosol Particle Morphology.
    Altaf MB; Freedman MA
    J Phys Chem Lett; 2017 Aug; 8(15):3613-3618. PubMed ID: 28723156
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Development of a One-Micrometer-Diameter Particle Size Standard Reference Material.
    Mulholland GW; Hartman AW; Hembree GG; Marx E; Lettieri TR
    J Res Natl Bur Stand (1977); 1985; 90(1):3-26. PubMed ID: 34566140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.