These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17328911)

  • 1. Directed mutagenesis identifies amino acid residues involved in elongation factor Tu binding to yeast Phe-tRNAPhe.
    Sanderson LE; Uhlenbeck OC
    J Mol Biol; 2007 Apr; 368(1):119-30. PubMed ID: 17328911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of thermodynamically relevant interactions between EF-Tu and backbone elements of tRNA.
    Pleiss JA; Uhlenbeck OC
    J Mol Biol; 2001 May; 308(5):895-905. PubMed ID: 11352580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA.
    Nissen P; Thirup S; Kjeldgaard M; Nyborg J
    Structure; 1999 Feb; 7(2):143-56. PubMed ID: 10368282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The affinity of elongation factor Tu for an aminoacyl-tRNA is modulated by the esterified amino acid.
    Dale T; Sanderson LE; Uhlenbeck OC
    Biochemistry; 2004 May; 43(20):6159-66. PubMed ID: 15147200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ternary complex of aminoacylated tRNA and EF-Tu-GTP. Recognition of a bond and a fold.
    Nissen P; Kjeldgaard M; Thirup S; Clark BF; Nyborg J
    Biochimie; 1996; 78(11-12):921-33. PubMed ID: 9150869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and crystallization of the ternary complex of elongation factor Tu:GTP and Phe-tRNA(Phe).
    Nissen P; Reshetnikova L; Siboska G; Polekhina G; Thirup S; Kjeldgaard M; Clark BF; Nyborg J
    FEBS Lett; 1994 Dec; 356(2-3):165-8. PubMed ID: 7805830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutagenesis of glutamine 290 in Escherichia coli and mitochondrial elongation factor Tu affects interactions with mitochondrial aminoacyl-tRNAs and GTPase activity.
    Hunter SE; Spremulli LL
    Biochemistry; 2004 Jun; 43(22):6917-27. PubMed ID: 15170329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limited proteolysis and amino acid replacements in the effector region of Thermus thermophilus elongation factor Tu.
    Zeidler W; Schirmer NK; Egle C; Ribeiro S; Kreutzer R; Sprinzl M
    Eur J Biochem; 1996 Jul; 239(2):265-71. PubMed ID: 8706729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of Glu259 in Escherichia coli elongation factor Tu in ternary complex formation.
    Pedersen GN; Rattenborg T; Knudsen CR; Clark BF
    Protein Eng; 1998 Feb; 11(2):101-8. PubMed ID: 9605544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog.
    Nissen P; Kjeldgaard M; Thirup S; Polekhina G; Reshetnikova L; Clark BF; Nyborg J
    Science; 1995 Dec; 270(5241):1464-72. PubMed ID: 7491491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ternary complex between elongation factor Tu.GTP and Phe-tRNA(Phe).
    Förster C; Limmer S; Ribeiro S; Hilgenfeld R; Sprinzl M
    Biochimie; 1993; 75(12):1159-66. PubMed ID: 8199251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The G222D mutation in elongation factor Tu inhibits the codon-induced conformational changes leading to GTPase activation on the ribosome.
    Vorstenbosch E; Pape T; Rodnina MV; Kraal B; Wintermeyer W
    EMBO J; 1996 Dec; 15(23):6766-74. PubMed ID: 8978702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solution structure of the ternary complex between aminoacyl-tRNA, elongation factor Tu, and guanosine triphosphate.
    Bilgin N; Ehrenberg M; Ebel C; Zaccai G; Sayers Z; Koch MH; Svergun DI; Barberato C; Volkov V; Nissen P; Nyborg J
    Biochemistry; 1998 Jun; 37(22):8163-72. PubMed ID: 9609712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of Escherichia coli elongation factor Tu in search of a role for the N-terminal region.
    Mansilla F; Knudsen CR; Laurberg M; Clark BF
    Protein Eng; 1997 Aug; 10(8):927-34. PubMed ID: 9415442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA.
    Navratil T; Spremulli LL
    Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-directed mutagenesis of Thermus thermophilus elongation factor Tu. Replacement of His85, Asp81 and Arg300.
    Zeidler W; Egle C; Ribeiro S; Wagner A; Katunin V; Kreutzer R; Rodnina M; Wintermeyer W; Sprinzl M
    Eur J Biochem; 1995 May; 229(3):596-604. PubMed ID: 7758452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GE2270A-resistant mutations in elongation factor Tu allow productive aminoacyl-tRNA binding to EF-Tu.GTP.GE2270A complexes.
    Zuurmond AM; Martien de Graaf J; Olsthoorn-Tieleman LN; van Duyl BY; Mörhle VG; Jurnak F; Mesters JR; Hilgenfeld R; Kraal B
    J Mol Biol; 2000 Dec; 304(5):995-1005. PubMed ID: 11124042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-resolved fluorescence studies on the ternary complex formed between bacterial elongation factor Tu, guanosine 5'-triphosphate, and phenylalanyl-tRNAPhe.
    Hazlett TL; Johnson AE; Jameson DM
    Biochemistry; 1989 May; 28(9):4109-17. PubMed ID: 2665814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of mutagenesis of residue 221 on the properties of bacterial and mitochondrial elongation factor EF-Tu.
    Hunter SE; Spremulli LL
    Biochim Biophys Acta; 2004 Jun; 1699(1-2):173-82. PubMed ID: 15158725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 51-63 base pair of tRNA confers specificity for binding by EF-Tu.
    Sanderson LE; Uhlenbeck OC
    RNA; 2007 Jun; 13(6):835-40. PubMed ID: 17449728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.