BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 17328933)

  • 1. Composition of the cuticle of developing sweet cherry fruit.
    Peschel S; Franke R; Schreiber L; Knoche M
    Phytochemistry; 2007 Apr; 68(7):1017-25. PubMed ID: 17328933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in strain and deposition of cuticle in developing sweet cherry fruit.
    Knoche M; Beyer M; Peschel S; Oparlakov B; Bukovac MJ
    Physiol Plant; 2004 Apr; 120(4):667-677. PubMed ID: 15032829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of cuticle composition after cold storage of "Celeste" and "Somerset" sweet cherry fruit.
    Belge B; Llovera M; Comabella E; Gatius F; Guillén P; Graell J; Lara I
    J Agric Food Chem; 2014 Aug; 62(34):8722-9. PubMed ID: 25089645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fruit cuticle composition of a melting and a nonmelting peach cultivar.
    Belge B; Llovera M; Comabella E; Graell J; Lara I
    J Agric Food Chem; 2014 Apr; 62(15):3488-95. PubMed ID: 24673591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fruit cuticle lipid composition and water loss in a diverse collection of pepper (Capsicum).
    Parsons EP; Popopvsky S; Lohrey GT; Alkalai-Tuvia S; Perzelan Y; Bosland P; Bebeli PJ; Paran I; Fallik E; Jenks MA
    Physiol Plant; 2013 Oct; 149(2):160-74. PubMed ID: 23496056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on water transport through the sweet cherry fruit surface: II. Conductance of the cuticle in relation to fruit development.
    Knoche M; Peschel S; Hinz M; Bukovac MJ
    Planta; 2001 Oct; 213(6):927-36. PubMed ID: 11722129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compositional, structural and functional cuticle analysis of Prunus laurocerasus L. sheds light on cuticular barrier plasticity.
    Diarte C; Xavier de Souza A; Staiger S; Deininger AC; Bueno A; Burghardt M; Graell J; Riederer M; Lara I; Leide J
    Plant Physiol Biochem; 2021 Jan; 158():434-445. PubMed ID: 33257229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mismatch between cuticle deposition and area expansion in fruit skins allows potentially catastrophic buildup of elastic strain.
    Lai X; Khanal BP; Knoche M
    Planta; 2016 Nov; 244(5):1145-1156. PubMed ID: 27469168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cutin composition of five finnish berries.
    Kallio H; Nieminen R; Tuomasjukka S; Hakala M
    J Agric Food Chem; 2006 Jan; 54(2):457-62. PubMed ID: 16417304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fruit cuticle lipid composition and fruit post-harvest water loss in an advanced backcross generation of pepper (Capsicum sp.).
    Parsons EP; Popopvsky S; Lohrey GT; Lü S; Alkalai-Tuvia S; Perzelan Y; Paran I; Fallik E; Jenks MA
    Physiol Plant; 2012 Sep; 146(1):15-25. PubMed ID: 22309400
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ontogenetic variation in chemical and physical characteristics of adaxial apple leaf surfaces.
    Bringe K; Schumacher CF; Schmitz-Eiberger M; Steiner U; Oerke EC
    Phytochemistry; 2006 Jan; 67(2):161-70. PubMed ID: 16321411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on water transport through the sweet cherry fruit surface. 11. FeCl3 decreases water permeability of polar pathways.
    Weichert H; Knoche M
    J Agric Food Chem; 2006 Aug; 54(17):6294-302. PubMed ID: 16910722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical composition of the cuticular membrane in guava fruit (Psidium guajava L.) affects barrier property to transpiration.
    Huang H; Lian Q; Wang L; Shan Y; Li F; Chang SK; Jiang Y
    Plant Physiol Biochem; 2020 Oct; 155():589-595. PubMed ID: 32846394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical Composition of Cuticle and Barrier Properties to Transpiration in the Fruit of
    Huang H; Wang L; Qiu D; Lu Y
    Front Plant Sci; 2022; 13():840061. PubMed ID: 35651771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical constituents and antioxidant activity of sweet cherry at different ripening stages.
    Serrano M; Guillén F; Martínez-Romero D; Castillo S; Valero D
    J Agric Food Chem; 2005 Apr; 53(7):2741-5. PubMed ID: 15796619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanotubules on plant surfaces: chemical composition of epicuticular wax crystals on needles of Taxus baccata L.
    Wen M; Buschhaus C; Jetter R
    Phytochemistry; 2006 Aug; 67(16):1808-17. PubMed ID: 16497341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leaf cuticle analyses: implications for the existence of cutan/non-ester cutin and its biosynthetic origin.
    Leide J; Nierop KGJ; Deininger AC; Staiger S; Riederer M; de Leeuw JW
    Ann Bot; 2020 Jun; 126(1):141-162. PubMed ID: 32222770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural wax constituents of a supercritical fluid CO(2) extract from quince (Cydonia oblonga Mill.) pomace.
    Lorenz P; Berger M; Bertrams J; Wende K; Wenzel K; Lindequist U; Meyer U; Stintzing FC
    Anal Bioanal Chem; 2008 May; 391(2):633-46. PubMed ID: 18418588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear and branched poly(omega-hydroxyacid) esters in plant cutins.
    Graça J; Lamosa P
    J Agric Food Chem; 2010 Sep; 58(17):9666-74. PubMed ID: 20687563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Extracellular Cell Wall Lipids: Wax, Cutin, and Suberin in Leaves, Roots, Fruits, and Seeds.
    Baales J; Zeisler-Diehl VV; Schreiber L
    Methods Mol Biol; 2021; 2295():275-293. PubMed ID: 34047982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.