These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 17329086)
21. Changes in the specific surface area of tablets composed of pharmaceutical materials with various deformation behaviors. Busignies V; Leclerc B; Truchon S; Tchoreloff P Drug Dev Ind Pharm; 2011 Feb; 37(2):225-33. PubMed ID: 20653462 [TBL] [Abstract][Full Text] [Related]
22. Time-dependent deformation of some direct compression excipients. Rees JE; Rue PJ J Pharm Pharmacol; 1978 Oct; 30(10):601-7. PubMed ID: 30812 [TBL] [Abstract][Full Text] [Related]
23. Tabletting behaviour of pellets of a series of porosities--a comparisonbetween pellets of two different compositions. Nicklasson F; Johansson B; Alderborn G Eur J Pharm Sci; 1999 Apr; 8(1):11-7. PubMed ID: 10072474 [TBL] [Abstract][Full Text] [Related]
24. Influence of excipients, drugs, and osmotic agent in the inner core on the time-controlled disintegration of compression-coated ethylcellulose tablets. Lin SY; Lin KH; Li MJ J Pharm Sci; 2002 Sep; 91(9):2040-6. PubMed ID: 12210050 [TBL] [Abstract][Full Text] [Related]
25. Investigating the effect of tablet thickness and punch curvature on density distribution using finite elements method. Diarra H; Mazel V; Busignies V; Tchoreloff P Int J Pharm; 2015 Sep; 493(1-2):121-8. PubMed ID: 26200746 [TBL] [Abstract][Full Text] [Related]
26. Ultrasound transmission measurements for tensile strength evaluation of tablets. Simonaho SP; Takala TA; Kuosmanen M; Ketolainen J Int J Pharm; 2011 May; 409(1-2):104-10. PubMed ID: 21356298 [TBL] [Abstract][Full Text] [Related]
27. Influence of compaction properties and interfacial topography on the performance of bilayer tablets. Kottala N; Abebe A; Sprockel O; Akseli I; Nikfar F; Cuitiño AM Int J Pharm; 2012 Oct; 436(1-2):171-8. PubMed ID: 22728259 [TBL] [Abstract][Full Text] [Related]
28. Application of crustacean chitin as a co-diluent in direct compression of tablets. Mir VG; Heinämäki J; Antikainen O; Sandler N; Revoredo OB; Colarte AI; Nieto OM; Yliruusi J AAPS PharmSciTech; 2010 Mar; 11(1):409-15. PubMed ID: 20238188 [TBL] [Abstract][Full Text] [Related]
29. Modulating Sticking Propensity of Pharmaceuticals Through Excipient Selection in a Direct Compression Tablet Formulation. Paul S; Sun CC Pharm Res; 2018 Mar; 35(6):113. PubMed ID: 29603027 [TBL] [Abstract][Full Text] [Related]
30. Development and evaluation of a novel dry-coated tablet technology for pellets as a substitute for the conventional encapsulation technology. Ando M; Kojima S; Ozeki Y; Nakayama Y; Nabeshima T Int J Pharm; 2007 May; 336(1):99-107. PubMed ID: 17223295 [TBL] [Abstract][Full Text] [Related]
31. A new parameter for characterization of tablet friability based on a systematical study of five excipients. Zhao H; Yu Y; Ni N; Zhao L; Lin X; Wang Y; Du R; Shen L Int J Pharm; 2022 Jan; 611():121339. PubMed ID: 34864121 [TBL] [Abstract][Full Text] [Related]
32. The strength of bilayered tablets. Podczeck F; Drake KR; Newton JM; Haririan I Eur J Pharm Sci; 2006 Dec; 29(5):361-6. PubMed ID: 16950605 [TBL] [Abstract][Full Text] [Related]
33. Compaction properties of microcrystalline cellulose and sodium sulfathiazole in combination with talc or magnesium stearate. Williams RO; McGinity JW J Pharm Sci; 1989 Dec; 78(12):1025-34. PubMed ID: 2614693 [TBL] [Abstract][Full Text] [Related]
34. Tensile and shear methods for measuring strength of bilayer tablets. Chang SY; Li JX; Sun CC Int J Pharm; 2017 May; 523(1):121-126. PubMed ID: 28284920 [TBL] [Abstract][Full Text] [Related]
35. Incorporating Turbula mixers into a blending scale-up model for evaluating the effect of magnesium stearate on tablet tensile strength and bulk specific volume. Kushner J Int J Pharm; 2012 Jun; 429(1-2):1-11. PubMed ID: 22405966 [TBL] [Abstract][Full Text] [Related]
36. Examining mechanical properties of various pharmaceutical excipients with the gravitation-based high-velocity compaction analysis method. Tanner T; Antikainen O; Ehlers H; Blanco D; Yliruusi J Int J Pharm; 2018 Mar; 539(1-2):131-138. PubMed ID: 29414122 [TBL] [Abstract][Full Text] [Related]
37. Note on the Use of Diametrical Compression to Determine Tablet Tensile Strength. Hilden J; Polizzi M; Zettler A J Pharm Sci; 2017 Jan; 106(1):418-421. PubMed ID: 27686682 [TBL] [Abstract][Full Text] [Related]
38. Unified compaction curve model for tensile strength of tablets made by roller compaction and direct compression. Farber L; Hapgood KP; Michaels JN; Fu XY; Meyer R; Johnson MA; Li F Int J Pharm; 2008 Jan; 346(1-2):17-24. PubMed ID: 17689211 [TBL] [Abstract][Full Text] [Related]
39. Dependence of Punch Sticking on Compaction Pressure-Roles of Particle Deformability and Tablet Tensile Strength. Paul S; Wang K; Taylor LJ; Murphy B; Krzyzaniak J; Dawson N; Mullarney MP; Meenan P; Sun CC J Pharm Sci; 2017 Aug; 106(8):2060-2067. PubMed ID: 28478129 [TBL] [Abstract][Full Text] [Related]
40. Predicting tablet tensile strength with a model derived from the gravitation-based high-velocity compaction analysis data. Tanner T; Antikainen O; Pollet A; Räikkönen H; Ehlers H; Juppo A; Yliruusi J Int J Pharm; 2019 Jul; 566():194-202. PubMed ID: 31100384 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]