BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 17329229)

  • 1. Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions.
    Lee HL; Jansen RK; Chumley TW; Kim KJ
    Mol Biol Evol; 2007 May; 24(5):1161-80. PubMed ID: 17329229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants.
    Chumley TW; Palmer JD; Mower JP; Fourcade HM; Calie PJ; Boore JL; Jansen RK
    Mol Biol Evol; 2006 Nov; 23(11):2175-90. PubMed ID: 16916942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Twelve newly assembled jasmine chloroplast genomes: unveiling genomic diversity, phylogenetic relationships and evolutionary patterns among Oleaceae and Jasminum species.
    Xu X; Huang H; Lin S; Zhou L; Yi Y; Lin E; Feng L; Zheng Y; Lin A; Yu L; Shen Y; Henry RJ; Fang J
    BMC Plant Biol; 2024 Apr; 24(1):331. PubMed ID: 38664619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Widespread occurrence of small inversions in the chloroplast genomes of land plants.
    Kim KJ; Lee HL
    Mol Cells; 2005 Feb; 19(1):104-13. PubMed ID: 15750347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative genomics of four Liliales families inferred from the complete chloroplast genome sequence of Veratrum patulum O. Loes. (Melanthiaceae).
    Do HD; Kim JS; Kim JH
    Gene; 2013 Nov; 530(2):229-35. PubMed ID: 23973725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two chloroplast DNA inversions originated simultaneously during the early evolution of the sunflower family (Asteraceae).
    Kim KJ; Choi KS; Jansen RK
    Mol Biol Evol; 2005 Sep; 22(9):1783-92. PubMed ID: 15917497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete chloroplast genome sequence of Elodea canadensis and comparative analyses with other monocot plastid genomes.
    Huotari T; Korpelainen H
    Gene; 2012 Oct; 508(1):96-105. PubMed ID: 22841789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage.
    Guisinger MM; Kuehl JV; Boore JL; Jansen RK
    Mol Biol Evol; 2011 Jan; 28(1):583-600. PubMed ID: 20805190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete nucleotide sequence of the chloroplast genome from the Tasmanian blue gum, Eucalyptus globulus (Myrtaceae).
    Steane DA
    DNA Res; 2005; 12(3):215-20. PubMed ID: 16303753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic analysis and evolution of morphological characters in the genus
    Nirmala Jeyarani J; Yohannan R; Vijayavalli D; Dwivedi MD; Pandey AK
    J Genet; 2018 Dec; 97(5):1225-1239. PubMed ID: 30555072
    [No Abstract]   [Full Text] [Related]  

  • 11. Characterization of the complete chloroplast genome of Hevea brasiliensis reveals genome rearrangement, RNA editing sites and phylogenetic relationships.
    Tangphatsornruang S; Uthaipaisanwong P; Sangsrakru D; Chanprasert J; Yoocha T; Jomchai N; Tragoonrung S
    Gene; 2011 Apr; 475(2):104-12. PubMed ID: 21241787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unique genes in plants: specificities and conserved features throughout evolution.
    Armisén D; Lecharny A; Aubourg S
    BMC Evol Biol; 2008 Oct; 8():280. PubMed ID: 18847470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of new polymorphic regions and differentiation of cultivated olives (Olea europaea L.) through plastome sequence comparison.
    Mariotti R; Cultrera NG; Díez CM; Baldoni L; Rubini A
    BMC Plant Biol; 2010 Sep; 10():211. PubMed ID: 20868482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel rate heterogeneity in chloroplast and mitochondrial genomes of Brazil nut trees (Lecythidaceae) is consistent with lineage effects.
    Soria-Hernanz DF; Braverman JM; Hamilton MB
    Mol Biol Evol; 2008 Jul; 25(7):1282-96. PubMed ID: 18385219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conservation of selection on matK following an ancient loss of its flanking intron.
    Duffy AM; Kelchner SA; Wolf PG
    Gene; 2009 Jun; 438(1-2):17-25. PubMed ID: 19236909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the chloroplast genome sequence of oil palm (Elaeis guineensis Jacq.).
    Uthaipaisanwong P; Chanprasert J; Shearman JR; Sangsrakru D; Yoocha T; Jomchai N; Jantasuriyarat C; Tragoonrung S; Tangphatsornruang S
    Gene; 2012 Jun; 500(2):172-80. PubMed ID: 22487870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogeny and classification of Oleaceae based on rps16 and trnL-F sequence data.
    Wallander E; Albert VA
    Am J Bot; 2000 Dec; 87(12):1827-41. PubMed ID: 11118421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pentatricopeptide repeat gene OTP51 with two LAGLIDADG motifs is required for the cis-splicing of plastid ycf3 intron 2 in Arabidopsis thaliana.
    de Longevialle AF; Hendrickson L; Taylor NL; Delannoy E; Lurin C; Badger M; Millar AH; Small I
    Plant J; 2008 Oct; 56(1):157-68. PubMed ID: 18557832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The complete chloroplast genome sequence of Taxus chinensis var. mairei (Taxaceae): loss of an inverted repeat region and comparative analysis with related species.
    Zhang Y; Ma J; Yang B; Li R; Zhu W; Sun L; Tian J; Zhang L
    Gene; 2014 May; 540(2):201-9. PubMed ID: 24583178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemotaxonomy of the Oleaceae: iridoids as taxonomic markers.
    Jensen SR; Franzyk H; Wallander E
    Phytochemistry; 2002 Jun; 60(3):213-31. PubMed ID: 12031440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.