BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 17329255)

  • 1. O-linked N-acetylglucosaminyltransferase inhibition prevents G2/M transition in Xenopus laevis oocytes.
    Dehennaut V; Lefebvre T; Sellier C; Leroy Y; Gross B; Walker S; Cacan R; Michalski JC; Vilain JP; Bodart JF
    J Biol Chem; 2007 Apr; 282(17):12527-36. PubMed ID: 17329255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of maturation-promoting factor during Xenopus oocyte maturation uncouples Ca(2+) store depletion from store-operated Ca(2+) entry.
    Machaca K; Haun S
    J Cell Biol; 2002 Jan; 156(1):75-85. PubMed ID: 11781335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose deprivation-induced increase in protein O-GlcNAcylation in cardiomyocytes is calcium-dependent.
    Zou L; Zhu-Mauldin X; Marchase RB; Paterson AJ; Liu J; Yang Q; Chatham JC
    J Biol Chem; 2012 Oct; 287(41):34419-31. PubMed ID: 22908225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic Inhibitors of O-GlcNAc Transferase That Act In Vivo Implicate Decreased O-GlcNAc Levels in Leptin-Mediated Nutrient Sensing.
    Liu TW; Zandberg WF; Gloster TM; Deng L; Murray KD; Shan X; Vocadlo DJ
    Angew Chem Int Ed Engl; 2018 Jun; 57(26):7644-7648. PubMed ID: 29756380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterocyclic aminoparthenolide derivatives modulate G(2)-M cell cycle progression during Xenopus oocyte maturation.
    Janganati V; Penthala NR; Cragle CE; MacNicol AM; Crooks PA
    Bioorg Med Chem Lett; 2014 Apr; 24(8):1963-7. PubMed ID: 24656611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells.
    Gloster TM; Zandberg WF; Heinonen JE; Shen DL; Deng L; Vocadlo DJ
    Nat Chem Biol; 2011 Mar; 7(3):174-81. PubMed ID: 21258330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein O-GlcNAcylation: emerging mechanisms and functions.
    Yang X; Qian K
    Nat Rev Mol Cell Biol; 2017 Jul; 18(7):452-465. PubMed ID: 28488703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated Glycosylation Patterns of Glycoproteins and DNA Methylation Landscapes in Mammalian Oogenesis and Preimplantation Embryo Development.
    Wang J; Tian GG; Li X; Sun Y; Cheng L; Li Y; Shen Y; Chen X; Tang W; Tao S; Wu J
    Front Cell Dev Biol; 2020; 8():555. PubMed ID: 32754589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen Sulfide Impairs Meiosis Resumption in
    Gelaude A; Slaby S; Cailliau K; Marin M; Lescuyer-Rousseau A; Molinaro C; Nevoral J; Kučerová-Chrpová V; Sedmikova M; Petr J; Martoriati A; Bodart JF
    Cells; 2020 Jan; 9(1):. PubMed ID: 31963573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperglycemia-Induced Aberrant Cell Proliferation; A Metabolic Challenge Mediated by Protein O-GlcNAc Modification.
    Nagy T; Fisi V; Frank D; Kátai E; Nagy Z; Miseta A
    Cells; 2019 Aug; 8(9):. PubMed ID: 31466420
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Fisi V; Kátai E; Orbán J; Dossena S; Miseta A; Nagy T
    Molecules; 2018 May; 23(6):. PubMed ID: 29861440
    [No Abstract]   [Full Text] [Related]  

  • 12. O-GlcNAc cycling in the developing, adult and geriatric brain.
    Lagerlöf O
    J Bioenerg Biomembr; 2018 Jun; 50(3):241-261. PubMed ID: 29790000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of Stress-Induced O-GlcNAc Protein Modification in the Regulation of Membrane Transport.
    Fisi V; Miseta A; Nagy T
    Oxid Med Cell Longev; 2017; 2017():1308692. PubMed ID: 29456783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of
    Luanpitpong S; Chanthra N; Janan M; Poohadsuan J; Samart P; U-Pratya Y; Rojanasakul Y; Issaragrisil S
    Mol Cancer Ther; 2018 Feb; 17(2):484-496. PubMed ID: 29167312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutrient-driven O-GlcNAc in proteostasis and neurodegeneration.
    Akan I; Olivier-Van Stichelen S; Bond MR; Hanover JA
    J Neurochem; 2018 Jan; 144(1):7-34. PubMed ID: 29049853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. O-GlcNAc transferase regulates transcriptional activity of human Oct4.
    Constable S; Lim JM; Vaidyanathan K; Wells L
    Glycobiology; 2017 Oct; 27(10):927-937. PubMed ID: 28922739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay between epigenetics and metabolism in oncogenesis: mechanisms and therapeutic approaches.
    Wong CC; Qian Y; Yu J
    Oncogene; 2017 Jun; 36(24):3359-3374. PubMed ID: 28092669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. O-GlcNAcylation enhances anaplastic thyroid carcinoma malignancy.
    Cheng YU; Li H; Li J; Li J; Gao Y; Liu B
    Oncol Lett; 2016 Jul; 12(1):572-578. PubMed ID: 27347182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. O-GlcNAcylation Antagonizes Phosphorylation of CDH1 (CDC20 Homologue 1).
    Tian J; Geng Q; Ding Y; Liao J; Dong MQ; Xu X; Li J
    J Biol Chem; 2016 Jun; 291(23):12136-44. PubMed ID: 27080259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced O-GlcNAcase expression promotes mitotic errors and spindle defects.
    Lanza C; Tan EP; Zhang Z; Machacek M; Brinker AE; Azuma M; Slawson C
    Cell Cycle; 2016 May; 15(10):1363-75. PubMed ID: 27070276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.