BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 17329404)

  • 1. Modeling transmural heterogeneity of K(ATP) current in rabbit ventricular myocytes.
    Michailova A; Lorentz W; McCulloch A
    Am J Physiol Cell Physiol; 2007 Aug; 293(2):C542-57. PubMed ID: 17329404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unique properties of the ATP-sensitive K⁺ channel in the mouse ventricular cardiac conduction system.
    Bao L; Kefaloyianni E; Lader J; Hong M; Morley G; Fishman GI; Sobie EA; Coetzee WA
    Circ Arrhythm Electrophysiol; 2011 Dec; 4(6):926-35. PubMed ID: 21984445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncoupling by (--)-epigallocatechin-3-gallate of ATP-sensitive potassium channels from phosphatidylinositol polyphosphates and ATP.
    Jin JY; Park SH; Bae JH; Cho HC; Lim JG; Park WS; Han J; Lee JH; Song DK
    Pharmacol Res; 2007 Sep; 56(3):237-47. PubMed ID: 17656102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of Kir6.0 and SUR2 ATP-sensitive potassium channel subunits in isolated ventricular myocytes.
    Singh H; Hudman D; Lawrence CL; Rainbow RD; Lodwick D; Norman RI
    J Mol Cell Cardiol; 2003 May; 35(5):445-59. PubMed ID: 12738227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Syntaxin-1A actions on sulfonylurea receptor 2A can block acidic pH-induced cardiac K(ATP) channel activation.
    Kang Y; Ng B; Leung YM; He Y; Xie H; Lodwick D; Norman RI; Tinker A; Tsushima RG; Gaisano HY
    J Biol Chem; 2006 Jul; 281(28):19019-28. PubMed ID: 16672225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP-sensitive potassium channels: metabolic sensing and cardioprotection.
    Zingman LV; Alekseev AE; Hodgson-Zingman DM; Terzic A
    J Appl Physiol (1985); 2007 Nov; 103(5):1888-93. PubMed ID: 17641217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling regulation of cardiac KATP and L-type Ca2+ currents by ATP, ADP, and Mg2+.
    Michailova A; Saucerman J; Belik ME; McCulloch AD
    Biophys J; 2005 Mar; 88(3):2234-49. PubMed ID: 15738467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential nucleotide regulation of KATP channels by SUR1 and SUR2A.
    Masia R; Enkvetchakul D; Nichols CG
    J Mol Cell Cardiol; 2005 Sep; 39(3):491-501. PubMed ID: 15893323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AMP-activated protein kinase mediates preconditioning in cardiomyocytes by regulating activity and trafficking of sarcolemmal ATP-sensitive K(+) channels.
    Sukhodub A; Jovanović S; Du Q; Budas G; Clelland AK; Shen M; Sakamoto K; Tian R; Jovanović A
    J Cell Physiol; 2007 Jan; 210(1):224-36. PubMed ID: 17044064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SUR2A C-terminal fragments reduce KATP currents and ischaemic tolerance of rat cardiac myocytes.
    Rainbow RD; Lodwick D; Hudman D; Davies NW; Norman RI; Standen NB
    J Physiol; 2004 Jun; 557(Pt 3):785-94. PubMed ID: 15020694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired activation of ATP-sensitive K+ channels in endocardial myocytes from left ventricular hypertrophy.
    Shimokawa J; Yokoshiki H; Tsutsui H
    Am J Physiol Heart Circ Physiol; 2007 Dec; 293(6):H3643-9. PubMed ID: 17921319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning of rabbit Kir6.1, SUR2A, and SUR2B: possible candidates for a renal K(ATP) channel.
    Brochiero E; Wallendorf B; Gagnon D; Laprade R; Lapointe JY
    Am J Physiol Renal Physiol; 2002 Feb; 282(2):F289-300. PubMed ID: 11788443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATPase activity of the sulfonylurea receptor: a catalytic function for the KATP channel complex.
    Bienengraeber M; Alekseev AE; Abraham MR; Carrasco AJ; Moreau C; Vivaudou M; Dzeja PP; Terzic A
    FASEB J; 2000 Oct; 14(13):1943-52. PubMed ID: 11023978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmural heterogeneity of repolarization and Ca2+ handling in a model of mouse ventricular tissue.
    Bondarenko VE; Rasmusson RL
    Am J Physiol Heart Circ Physiol; 2010 Aug; 299(2):H454-69. PubMed ID: 20525874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. β-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model.
    Negroni JA; Morotti S; Lascano EC; Gomes AV; Grandi E; Puglisi JL; Bers DM
    J Mol Cell Cardiol; 2015 Apr; 81():162-75. PubMed ID: 25724724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postnatal development of transmural gradients in expression of ion channels and Ca²⁺-handling proteins in the ventricle.
    Abd Allah ES; Aslanidi OV; Tellez JO; Yanni J; Billeter R; Zhang H; Dobrzynski H; Boyett MR
    J Mol Cell Cardiol; 2012 Aug; 53(2):145-55. PubMed ID: 22537893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP-sensitive K+ channel channel/enzyme multimer: metabolic gating in the heart.
    Alekseev AE; Hodgson DM; Karger AB; Park S; Zingman LV; Terzic A
    J Mol Cell Cardiol; 2005 Jun; 38(6):895-905. PubMed ID: 15910874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Syntaxin-1A inhibits KATP channels by interacting with specific conserved motifs within sulfonylurea receptor 2A.
    Chao C; Liang T; Kang Y; Lin X; Xie H; Feng ZP; Gaisano HY
    J Mol Cell Cardiol; 2011 Nov; 51(5):790-802. PubMed ID: 21884702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blockers of the ATP-sensitive potassium channel SUR2A/Kir6.2: a new approach to prevent sudden cardiac death.
    Englert HC; Heitsch H; Gerlach U; Knieps S
    Curr Med Chem Cardiovasc Hematol Agents; 2003 Oct; 1(3):253-71. PubMed ID: 15326916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-terminal tails of sulfonylurea receptors control ADP-induced activation and diazoxide modulation of ATP-sensitive K(+) channels.
    Matsuoka T; Matsushita K; Katayama Y; Fujita A; Inageda K; Tanemoto M; Inanobe A; Yamashita S; Matsuzawa Y; Kurachi Y
    Circ Res; 2000 Nov; 87(10):873-80. PubMed ID: 11073882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.