These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Biomethylation and volatilization of arsenic by the marine microalgae Ostreococcus tauri. Zhang SY; Sun GX; Yin XX; Rensing C; Zhu YG Chemosphere; 2013 Sep; 93(1):47-53. PubMed ID: 23726009 [TBL] [Abstract][Full Text] [Related]
3. Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa. Wang Z; Luo Z; Yan C Environ Sci Pollut Res Int; 2013 Oct; 20(10):7286-95. PubMed ID: 23636594 [TBL] [Abstract][Full Text] [Related]
4. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp. Bahar MM; Megharaj M; Naidu R Environ Sci Pollut Res Int; 2016 Feb; 23(3):2663-8. PubMed ID: 26438364 [TBL] [Abstract][Full Text] [Related]
5. Microbial interactions in the arsenic cycle: adoptive strategies and applications in environmental management. Dhuldhaj UP; Yadav IC; Singh S; Sharma NK Rev Environ Contam Toxicol; 2013; 224():1-38. PubMed ID: 23232917 [TBL] [Abstract][Full Text] [Related]
6. Biological activity of inorganic arsenic and antimony reflects oxidation state in cultured human keratinocytes. Patterson TJ; Ngo M; Aronov PA; Reznikova TV; Green PG; Rice RH Chem Res Toxicol; 2003 Dec; 16(12):1624-31. PubMed ID: 14680377 [TBL] [Abstract][Full Text] [Related]
7. A Parasitic Arsenic Cycle That Shuttles Energy from Phytoplankton to Heterotrophic Bacterioplankton. Giovannoni SJ; Halsey KH; Saw J; Muslin O; Suffridge CP; Sun J; Lee CP; Moore ER; Temperton B; Noell SE mBio; 2019 Mar; 10(2):. PubMed ID: 30890605 [TBL] [Abstract][Full Text] [Related]
8. Genetic identification of arsenate reductase and arsenite oxidase in redox transformations carried out by arsenic metabolising prokaryotes - A comprehensive review. Kumari N; Jagadevan S Chemosphere; 2016 Nov; 163():400-412. PubMed ID: 27565307 [TBL] [Abstract][Full Text] [Related]
9. Arsenic biotransformation by the brown macroalga, Fucus serratus. Geiszinger A; Goessler W; Pedersen SN; Francesconi KA Environ Toxicol Chem; 2001 Oct; 20(10):2255-62. PubMed ID: 11596758 [TBL] [Abstract][Full Text] [Related]
10. Arsenic hazards: strategies for tolerance and remediation by plants. Tripathi RD; Srivastava S; Mishra S; Singh N; Tuli R; Gupta DK; Maathuis FJ Trends Biotechnol; 2007 Apr; 25(4):158-65. PubMed ID: 17306392 [TBL] [Abstract][Full Text] [Related]
11. Arsenic-resistant proteobacterium from the phyllosphere of arsenic-hyperaccumulating fern (Pteris vittata L.) reduces arsenate to arsenite. Rathinasabapathi B; Raman SB; Kertulis G; Ma L Can J Microbiol; 2006 Jul; 52(7):695-700. PubMed ID: 16917527 [TBL] [Abstract][Full Text] [Related]
12. The metabolism of arsenite and arsenate by the rat. Lerman S; Clarkson TW Fundam Appl Toxicol; 1983; 3(4):309-14. PubMed ID: 6628893 [TBL] [Abstract][Full Text] [Related]
13. Arsenic uptake and speciation and the effects of phosphate nutrition in hydroponically grown kikuyu grass (Pennisetum clandestinum Hochst). Panuccio MR; Logoteta B; Beone GM; Cagnin M; Cacco G Environ Sci Pollut Res Int; 2011 Aug; 19(7):3046-53. PubMed ID: 22367495 [TBL] [Abstract][Full Text] [Related]
14. Biotransformation of the pesticide sodium arsenate. Shariatpanahi M; Anderson AC; Abdelghani AA; Englande AJ; Hughes J; Wilkinson RF J Environ Sci Health B; 1981; 16(1):35-47. PubMed ID: 7009715 [TBL] [Abstract][Full Text] [Related]
15. Reduction and methylation of sodium arsenate in the rat. Rowland IR; Davies MJ J Appl Toxicol; 1982 Dec; 2(6):294-9. PubMed ID: 7185908 [TBL] [Abstract][Full Text] [Related]
16. Production of arsine and methylarsines in soil and in culture. Cheng CN; Focht DD Appl Environ Microbiol; 1979 Sep; 38(3):494-8. PubMed ID: 533276 [TBL] [Abstract][Full Text] [Related]
17. Microbial responses to environmental arsenic. Páez-Espino D; Tamames J; de Lorenzo V; Cánovas D Biometals; 2009 Feb; 22(1):117-30. PubMed ID: 19130261 [TBL] [Abstract][Full Text] [Related]
18. Analysis of accumulation, extractability, and metabolization of five different phenylarsenic compounds in plants by ion chromatography with mass spectrometric detection and by atomic emission spectroscopy. Schmidt AC; Kutschera K; Mattusch J; Otto M Chemosphere; 2008 Dec; 73(11):1781-7. PubMed ID: 18848716 [TBL] [Abstract][Full Text] [Related]