BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17329967)

  • 1. Absence of reciprocal feedback between MPF and ERK2 MAP kinase in mitotic Xenopus laevis embryo cell-free extract.
    Bazile F; Pascal A; Karaiskou A; Chesnel F; Kubiak JZ
    Cell Cycle; 2007 Feb; 6(4):489-96. PubMed ID: 17329967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclin B dissociation from CDK1 precedes its degradation upon MPF inactivation in mitotic extracts of Xenopus laevis embryos.
    Chesnel F; Bazile F; Pascal A; Kubiak JZ
    Cell Cycle; 2006 Aug; 5(15):1687-98. PubMed ID: 16921258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclin B2/cyclin-dependent kinase1 dissociation precedes CDK1 Thr-161 dephosphorylation upon M-phase promoting factor inactivation in Xenopus laevis cell-free extract.
    Chesnel F; Bazile F; Pascal A; Kubiak JZ
    Int J Dev Biol; 2007; 51(4):297-305. PubMed ID: 17554681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential proteomic screen to evidence proteins ubiquitinated upon mitotic exit in cell-free extract of Xenopus laevis embryos.
    Bazile F; Gagné JP; Mercier G; Lo KS; Pascal A; Vasilescu J; Figeys D; Poirier GG; Kubiak JZ; Chesnel F
    J Proteome Res; 2008 Nov; 7(11):4701-14. PubMed ID: 18823142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constant regulation of both the MPF amplification loop and the Greatwall-PP2A pathway is required for metaphase II arrest and correct entry into the first embryonic cell cycle.
    Lorca T; Bernis C; Vigneron S; Burgess A; Brioudes E; Labbé JC; Castro A
    J Cell Sci; 2010 Jul; 123(Pt 13):2281-91. PubMed ID: 20554897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polo-like kinase confers MPF autoamplification competence to growing Xenopus oocytes.
    Karaiskou A; Leprêtre AC; Pahlavan G; Du Pasquier D; Ozon R; Jessus C
    Development; 2004 Apr; 131(7):1543-52. PubMed ID: 14985258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular acidification delays hormonal G2/M transition and inhibits G2/M transition triggered by thiophosphorylated MAPK in Xenopus oocytes.
    Sellier C; Bodart JF; Flament S; Baert F; Gannon J; Vilain JP
    J Cell Biochem; 2006 May; 98(2):287-300. PubMed ID: 16408274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role for non-proteolytic control of M-phase-promoting factor activity at M-phase exit.
    D'Angiolella V; Palazzo L; Santarpia C; Costanzo V; Grieco D
    PLoS One; 2007 Feb; 2(2):e247. PubMed ID: 17327911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differences in regulation of the first two M-phases in Xenopus laevis embryo cell-free extracts.
    Chesnel F; Vignaux F; Richard-Parpaillon L; Huguet A; Kubiak JZ
    Dev Biol; 2005 Sep; 285(2):358-75. PubMed ID: 16087172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The phosphorylation of ARPP19 by Greatwall renders the auto-amplification of MPF independently of PKA in Xenopus oocytes.
    Dupré A; Buffin E; Roustan C; Nairn AC; Jessus C; Haccard O
    J Cell Sci; 2013 Sep; 126(Pt 17):3916-26. PubMed ID: 23781026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos.
    Novak B; Tyson JJ
    J Cell Sci; 1993 Dec; 106 ( Pt 4)():1153-68. PubMed ID: 8126097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. M-phase MELK activity is regulated by MPF and MAPK.
    Badouel C; Körner R; Frank-Vaillant M; Couturier A; Nigg EA; Tassan JP
    Cell Cycle; 2006 Apr; 5(8):883-9. PubMed ID: 16628004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p21ras-induced meiotic maturation of Xenopus oocytes in the absence of protein synthesis: MPF activation is preceded by activation of MAP and S6 kinases.
    Nebreda AR; Porras A; Santos E
    Oncogene; 1993 Feb; 8(2):467-77. PubMed ID: 8381222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xenopus H-RasV12 promotes entry into meiotic M phase and cdc2 activation independently of Mos and p42(MAPK).
    Dupré A; Suziedelis K; Valuckaite R; de Gunzburg J; Ozon R; Jessus C; Haccard O
    Oncogene; 2002 Sep; 21(42):6425-33. PubMed ID: 12226746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitogen-activated protein kinase (MAP kinase) activation in Xenopus oocytes: roles of MPF and protein synthesis.
    Haccard O; Jessus C; Rime H; Goris J; Merlevede W; Ozon R
    Mol Reprod Dev; 1993 Sep; 36(1):96-105. PubMed ID: 8398135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell cycle dynamics of an M-phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs.
    Gerhart J; Wu M; Kirschner M
    J Cell Biol; 1984 Apr; 98(4):1247-55. PubMed ID: 6425302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microinjection of Cdc25 protein phosphatase into Xenopus prophase oocyte activates MPF and arrests meiosis at metaphase I.
    Rime H; Huchon D; De Smedt V; Thibier C; Galaktionov K; Jessus C; Ozon R
    Biol Cell; 1994; 82(1):11-22. PubMed ID: 7735115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of maternal gene expression by MEK/MAPK and MPF signaling in porcine oocytes during in vitro meiotic maturation.
    Zhang DX; Park WJ; Sun SC; Xu YN; Li YH; Cui XS; Kim NH
    J Reprod Dev; 2011 Feb; 57(1):49-56. PubMed ID: 20834195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rewiring the exit from mitosis.
    Ciliberto A; Lukács A; Tóth A; Tyson JJ; Novák B
    Cell Cycle; 2005 Aug; 4(8):1107-12. PubMed ID: 15970669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Independent activation of MAP kinase and MPF during the initiation of meiotic maturation in pig oocytes.
    Ye J; Flint AP; Luck MR; Campbell KH
    Reproduction; 2003 May; 125(5):645-56. PubMed ID: 12713427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.