These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Magnetism and microfluidics. Pamme N Lab Chip; 2006 Jan; 6(1):24-38. PubMed ID: 16372066 [TBL] [Abstract][Full Text] [Related]
43. Manipulation of self-assembled structures of magnetic beads for microfluidic mixing and assaying. Rida A; Gijs MA Anal Chem; 2004 Nov; 76(21):6239-46. PubMed ID: 15516114 [TBL] [Abstract][Full Text] [Related]
44. Integration of a surface acoustic wave biosensor in a microfluidic polymer chip. Länge K; Blaess G; Voigt A; Götzen R; Rapp M Biosens Bioelectron; 2006 Aug; 22(2):227-32. PubMed ID: 16458497 [TBL] [Abstract][Full Text] [Related]
45. Miniaturized immunoassay microfluidic system with electrokinetic control. Xiang Q; Hu G; Gao Y; Li D Biosens Bioelectron; 2006 Apr; 21(10):2006-9. PubMed ID: 16289606 [TBL] [Abstract][Full Text] [Related]
46. Packaging commercial CMOS chips for lab on a chip integration. Datta-Chaudhuri T; Abshire P; Smela E Lab Chip; 2014 May; 14(10):1753-66. PubMed ID: 24682025 [TBL] [Abstract][Full Text] [Related]
47. [Application of microfluidic-chip in biomedicine]. Bi YN; Zhang HJ Sheng Wu Gong Cheng Xue Bao; 2006 Jan; 22(1):167-71. PubMed ID: 16572859 [TBL] [Abstract][Full Text] [Related]
49. A microfluidic abacus channel for controlling the addition of droplets. Um E; Park JK Lab Chip; 2009 Jan; 9(2):207-12. PubMed ID: 19107275 [TBL] [Abstract][Full Text] [Related]
50. Single-cell analysis of yeast, mammalian cells, and fungal spores with a microfluidic pressure-driven chip-based system. Palková Z; Váchová L; Valer M; Preckel T Cytometry A; 2004 Jun; 59(2):246-53. PubMed ID: 15170604 [TBL] [Abstract][Full Text] [Related]
51. Microfluidic device for dielectrophoresis manipulation and electrodisruption of respiratory pathogen Bordetella pertussis. de la Rosa C; Tilley PA; Fox JD; Kaler KV IEEE Trans Biomed Eng; 2008 Oct; 55(10):2426-32. PubMed ID: 18838368 [TBL] [Abstract][Full Text] [Related]
52. Fully integrated miniature device for automated gene expression DNA microarray processing. Liu RH; Nguyen T; Schwarzkopf K; Fuji HS; Petrova A; Siuda T; Peyvan K; Bizak M; Danley D; McShea A Anal Chem; 2006 Mar; 78(6):1980-6. PubMed ID: 16536436 [TBL] [Abstract][Full Text] [Related]
53. Programmable and automated bead-based microfluidics for versatile DNA microarrays under isothermal conditions. Penchovsky R Lab Chip; 2013 Jun; 13(12):2370-80. PubMed ID: 23645132 [TBL] [Abstract][Full Text] [Related]
54. Field-programmable lab-on-a-chip based on microelectrode dot array architecture. Wang G; Teng D; Lai YT; Lu YW; Ho Y; Lee CY IET Nanobiotechnol; 2014 Sep; 8(3):163-71. PubMed ID: 25082225 [TBL] [Abstract][Full Text] [Related]
55. Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor. Ymeti A; Kanger JS; Greve J; Besselink GA; Lambeck PV; Wijn R; Heideman RG Biosens Bioelectron; 2005 Jan; 20(7):1417-21. PubMed ID: 15590297 [TBL] [Abstract][Full Text] [Related]
56. The heterogeneous integration of single-walled carbon nanotubes onto complementary metal oxide semiconductor circuitry for sensing applications. Chen CL; Agarwal V; Sonkusale S; Dokmeci MR Nanotechnology; 2009 Jun; 20(22):225302. PubMed ID: 19433877 [TBL] [Abstract][Full Text] [Related]
57. Controlling the magnetic field distribution on the micrometer scale and generation of magnetic bead patterns for microfluidic applications. Yu X; Feng X; Hu J; Zhang ZL; Pang DW Langmuir; 2011 Apr; 27(8):5147-56. PubMed ID: 21417286 [TBL] [Abstract][Full Text] [Related]
58. Miniaturized and integrated fluorescence detectors for microfluidic capillary electrophoresis devices. Kamei T Methods Mol Biol; 2009; 503():361-74. PubMed ID: 19151952 [TBL] [Abstract][Full Text] [Related]
59. Purification and enrichment of virus samples utilizing magnetic beads on a microfluidic system. Lien KY; Lin JL; Liu CY; Lei HY; Lee GB Lab Chip; 2007 Jul; 7(7):868-75. PubMed ID: 17594006 [TBL] [Abstract][Full Text] [Related]
60. Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Ho CT; Lin RZ; Chang WY; Chang HY; Liu CH Lab Chip; 2006 Jun; 6(6):724-34. PubMed ID: 16738722 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]