BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 17330165)

  • 1. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV.
    Kinoshita H; Kaneda S; Fujii T; Oshima M
    Lab Chip; 2007 Mar; 7(3):338-46. PubMed ID: 17330165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles.
    Lima R; Wada S; Takeda M; Tsubota K; Yamaguchi T
    J Biomech; 2007; 40(12):2752-7. PubMed ID: 17399723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualizing the transient electroosmotic flow and measuring the zeta potential of microchannels with a micro-PIV technique.
    Yan D; Nguyen NT; Yang C; Huang X
    J Chem Phys; 2006 Jan; 124(2):021103. PubMed ID: 16422562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of red cell velocity in microvessels using particle image velocimetry (PIV).
    Nakano A; Sugii Y; Minamiyama M; Niimi H
    Clin Hemorheol Microcirc; 2003; 29(3-4):445-55. PubMed ID: 14724373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.
    Ford MD; Nikolov HN; Milner JS; Lownie SP; Demont EM; Kalata W; Loth F; Holdsworth DW; Steinman DA
    J Biomech Eng; 2008 Apr; 130(2):021015. PubMed ID: 18412502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a custom-designed echo particle image velocimetry system for multi-component hemodynamic measurements: system characterization and initial experimental results.
    Liu L; Zheng H; Williams L; Zhang F; Wang R; Hertzberg J; Shandas R
    Phys Med Biol; 2008 Mar; 53(5):1397-412. PubMed ID: 18296769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced mixing of droplets during coalescence on a surface with a wettability gradient.
    Lai YH; Hsu MH; Yang JT
    Lab Chip; 2010 Nov; 10(22):3149-56. PubMed ID: 20922226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental study on the fluid mechanics of blood sucking in the proboscis of a female mosquito.
    Lee SJ; Kim BH; Lee JY
    J Biomech; 2009 May; 42(7):857-64. PubMed ID: 19272604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of EWOD-driven droplets by PIV investigation.
    Lu HW; Bottausci F; Fowler JD; Bertozzi AL; Meinhart C; Kim CJ
    Lab Chip; 2008 Mar; 8(3):456-61. PubMed ID: 18305865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature and velocity measurement fields of fluids using a schlieren system.
    Martínez-González A; Guerrero-Viramontes JA; Moreno-Hernández D
    Appl Opt; 2012 Jun; 51(16):3519-25. PubMed ID: 22695589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of measurement accuracy of X-ray PIV in comparison with the micro-PIV technique.
    Park H; Jung SY; Park JH; Kim JH; Lee SJ
    J Synchrotron Radiat; 2018 Mar; 25(Pt 2):552-559. PubMed ID: 29488936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood cell assisted in vivo Particle Image Velocimetry using the confocal laser scanning microscope.
    Choi SM; Kim WH; Côté D; Park CW; Lee H
    Opt Express; 2011 Feb; 19(5):4357-68. PubMed ID: 21369266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of flow behaviors of droplet merging and splitting in microchannels using Micro-PIV measurement.
    Shen F; Li Y; Liu Z; Li X
    Microfluid Nanofluidics; 2017 Apr; 21(4):. PubMed ID: 28890680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optofluidic microscope with 3D spatial resolution.
    Vig AL; Marie R; Jensen E; Kristensen A
    Opt Express; 2010 Mar; 18(5):4158-69. PubMed ID: 20389429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro wet analysis system using multi-phase laminar flows in three-dimensional microchannel network.
    Kikutani Y; Hisamoto H; Tokeshi M; Kitamori T
    Lab Chip; 2004 Aug; 4(4):328-32. PubMed ID: 15269799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved X-ray PIV technique for diagnosing opaque biofluid flow with insufficient X-ray fluxes.
    Jung SY; Park HW; Kim BH; Lee SJ
    J Synchrotron Radiat; 2013 May; 20(Pt 3):498-503. PubMed ID: 23592630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of fluorescence correlation spectroscopy for velocity imaging in microfluidic devices.
    Kuricheti KK; Buschmann V; Weston KD
    Appl Spectrosc; 2004 Oct; 58(10):1180-6. PubMed ID: 15527518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Versatile microfluidic total internal reflection (TIR)-based devices: application to microbeads velocity measurement and single molecule detection with upright and inverted microscope.
    Le NC; Yokokawa R; Dao DV; Nguyen TD; Wells JC; Sugiyama S
    Lab Chip; 2009 Jan; 9(2):244-50. PubMed ID: 19107280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent particle image velocimetry: application to flow measurement in refractive index-matched porous media.
    Northrup MA; Kulp TJ; Angel SM
    Appl Opt; 1991 Jul; 30(21):3034-40. PubMed ID: 20706352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.