These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 17330173)
21. Design of a recursively-structured valveless device for microfluidic manipulation. Chung YC; Jen CP; Lin YC; Wu CY; Wu TC Lab Chip; 2003 Aug; 3(3):168-72. PubMed ID: 15100769 [TBL] [Abstract][Full Text] [Related]
22. Chemical and physical processes for integrated temperature control in microfluidic devices. Guijt RM; Dodge A; van Dedem GW; de Rooij NF; Verpoorte E Lab Chip; 2003 Feb; 3(1):1-4. PubMed ID: 15100796 [TBL] [Abstract][Full Text] [Related]
23. An inexpensive and portable microchip-based platform for integrated RT-PCR and capillary electrophoresis. Kaigala GV; Hoang VN; Stickel A; Lauzon J; Manage D; Pilarski LM; Backhouse CJ Analyst; 2008 Mar; 133(3):331-8. PubMed ID: 18299747 [TBL] [Abstract][Full Text] [Related]
24. Miniaturized and integrated fluorescence detectors for microfluidic capillary electrophoresis devices. Kamei T Methods Mol Biol; 2009; 503():361-74. PubMed ID: 19151952 [TBL] [Abstract][Full Text] [Related]
25. Bead-based microfluidic immunoassays: the next generation. Lim CT; Zhang Y Biosens Bioelectron; 2007 Feb; 22(7):1197-204. PubMed ID: 16857357 [TBL] [Abstract][Full Text] [Related]
27. Microfluidics: an opportunity for trend-setting drug delivery. Goettsche T; Ernst H; Messner S; Sandmaier H Med Device Technol; 2004 Mar; 15(2):12-5. PubMed ID: 15154332 [TBL] [Abstract][Full Text] [Related]
28. Total nucleic acid analysis integrated on microfluidic devices. Chen L; Manz A; Day PJ Lab Chip; 2007 Nov; 7(11):1413-23. PubMed ID: 17960265 [TBL] [Abstract][Full Text] [Related]
29. Performing microchannel temperature cycling reactions using reciprocating reagent shuttling along a radial temperature gradient. Cheng JY; Hsieh CJ; Chuang YC; Hsieh JR Analyst; 2005 Jun; 130(6):931-40. PubMed ID: 15912243 [TBL] [Abstract][Full Text] [Related]
30. Lab-on-a-chip in vitro compartmentalization technologies for protein studies. Zhu Y; Power BE Adv Biochem Eng Biotechnol; 2008; 110():81-114. PubMed ID: 18594785 [TBL] [Abstract][Full Text] [Related]
31. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application. Chung KH; Hong JW; Lee DS; Yoon HC Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640 [TBL] [Abstract][Full Text] [Related]
32. Proteomics-on-a-chip: the challenge to couple lab-on-a-chip unit operations. Schasfoort RB Expert Rev Proteomics; 2004 Jun; 1(1):123-32. PubMed ID: 15966805 [TBL] [Abstract][Full Text] [Related]
33. Microfluidic platform with mass spectrometry detection for the analysis of phosphoproteins. Dawoud AA; Sarvaiya HA; Lazar IM Electrophoresis; 2007 Dec; 28(24):4645-60. PubMed ID: 18072212 [TBL] [Abstract][Full Text] [Related]
37. Microfluidic device for the discrimination of single-nucleotide polymorphisms in DNA oligomers using electrochemically actuated alkaline dehybridization. Zhang H; Mitrovski SM; Nuzzo RG Anal Chem; 2007 Dec; 79(23):9014-21. PubMed ID: 17973402 [TBL] [Abstract][Full Text] [Related]
38. Charge-coupled device operated in a time-delayed integration mode as an approach to high-throughput flow-based single molecule analysis. Emory JM; Soper SA Anal Chem; 2008 May; 80(10):3897-903. PubMed ID: 18412372 [TBL] [Abstract][Full Text] [Related]
39. An integrated QCM-based narcotics sensing microsystem. Frisk T; Sandström N; Eng L; van der Wijngaart W; Månsson P; Stemme G Lab Chip; 2008 Oct; 8(10):1648-57. PubMed ID: 18813386 [TBL] [Abstract][Full Text] [Related]
40. A micro circulating PCR chip using a suction-type membrane for fluidic transport. Chien LJ; Wang JH; Hsieh TM; Chen PH; Chen PJ; Lee DS; Luo CH; Lee GB Biomed Microdevices; 2009 Apr; 11(2):359-67. PubMed ID: 18975094 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]