BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 17330226)

  • 41. Numerical simulation of DNA sample preconcentration in microdevice electrophoresis.
    Srivastava A; Metaxas AC; So P; Matsudaira P; Ehrlich D; Georghiou GE
    Electrophoresis; 2005 Mar; 26(6):1130-43. PubMed ID: 15704245
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Field amplified sample stacking coupled with chip-based capillary electrophoresis using negative pressure sample injection technique.
    Zhang L; Yin XF
    J Chromatogr A; 2006 Dec; 1137(2):243-8. PubMed ID: 17055523
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design and numerical simulation of a DNA electrophoretic stretching device.
    Kim JM; Doyle PS
    Lab Chip; 2007 Feb; 7(2):213-25. PubMed ID: 17268624
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deoxyribonucleic acid modified poly(dimethylsiloxane) microfluidic channels for the enhancement of microchip electrophoresis.
    Liang R; Hu P; Gan G; Qiu J
    Talanta; 2009 Mar; 77(5):1647-53. PubMed ID: 19159778
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unsteady transport phenomena in free-flow electrophoresis--prerequisite of ultrafast sample cleaning in microfluidic devices.
    Klepárník K; Otevrel M
    Electrophoresis; 2004 Nov; 25(21-22):3633-42. PubMed ID: 15565699
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Generating high peak capacity 2-D maps of complex proteomes using PMMA microchip electrophoresis.
    Osiri JK; Shadpour H; Park S; Snowden BC; Chen ZY; Soper SA
    Electrophoresis; 2008 Dec; 29(24):4984-92. PubMed ID: 19130578
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Using channel depth to isolate and control flow in a micro free-flow electrophoresis device.
    Fonslow BR; Barocas VH; Bowser MT
    Anal Chem; 2006 Aug; 78(15):5369-74. PubMed ID: 16878871
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Frequency bandwidth limitation of external pulse electric field in microchannels. Applications to analyte velocity modulation detections.
    Wang SC
    Biosens Bioelectron; 2004 Jul; 20(1):139-42. PubMed ID: 15142587
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Online preconcentration by transient isotachophoresis in linear polymer on a poly(methyl methacrylate) microchip for separation of human serum albumin immunoassay mixtures.
    Mohamadi MR; Kaji N; Tokeshi M; Baba Y
    Anal Chem; 2007 May; 79(10):3667-72. PubMed ID: 17437335
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Concentration cascade of leading electrolyte using bidirectional isotachophoresis.
    Bahga SS; Santiago JG
    Electrophoresis; 2012 Mar; 33(6):1048-59. PubMed ID: 22528425
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 10,000-fold concentration increase of the biomarker cardiac troponin I in a reducing union microfluidic chip using cationic isotachophoresis.
    Bottenus D; Jubery TZ; Ouyang Y; Dong WJ; Dutta P; Ivory CF
    Lab Chip; 2011 Mar; 11(5):890-8. PubMed ID: 21416810
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Turn-induced isotachophoretic focusing in microfluidic channels.
    Paschkewitz JS; Molho JI; Xu H; Bharadwaj R; Park CC
    Electrophoresis; 2007 Dec; 28(24):4561-71. PubMed ID: 18008306
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rapid quantification of quinine by multi-stacking in a portable microchip electrophoresis system.
    Tai CT; See HH
    Electrophoresis; 2019 Feb; 40(3):455-461. PubMed ID: 30450561
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microfluidic 2-D PAGE using multifunctional in situ polyacrylamide gels and discontinuous buffers.
    Yang S; Liu J; Lee CS; Devoe DL
    Lab Chip; 2009 Feb; 9(4):592-9. PubMed ID: 19190795
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-sensitivity capillary and microchip electrophoresis using electrokinetic supercharging preconcentration. Insight into the stacking mechanism via computer modeling.
    Xu Z; Timerbaev AR; Hirokawa T
    J Chromatogr A; 2009 Jan; 1216(4):660-70. PubMed ID: 18996535
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Separation of carboxylic acids in human serum by isotachophoresis using a commercial field-deployable analytical platform combined with in-house glass microfluidic chips.
    Smejkal P; Breadmore MC; Guijt RM; Grym J; Foret F; Bek F; Macka M
    Anal Chim Acta; 2012 Nov; 755():115-20. PubMed ID: 23146402
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Isotachophoresis at pH extremes: theory and experimental validation.
    Ermakov SV; Zhukov MY; Capelli L; Righetti PG
    Electrophoresis; 1998 Feb; 19(2):192-205. PubMed ID: 9548279
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A low temperature bonding of quartz microfluidic chip for serum lipoproteins analysis.
    Zhuang G; Jin Q; Liu J; Cong H; Liu K; Zhao J; Yang M; Wang H
    Biomed Microdevices; 2006 Sep; 8(3):255-61. PubMed ID: 16799750
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Exceeding 20,000-fold concentration of protein by the on-line isotachophoresis concentration in poly(methyl methacrylate) microchip.
    Wang J; Zhang Y; Mohamadi MR; Kaji N; Tokeshi M; Baba Y
    Electrophoresis; 2009 Sep; 30(18):3250-6. PubMed ID: 19722200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.