These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 17330884)

  • 1. Accuracy of the three-body fragment molecular orbital method applied to Møller-Plesset perturbation theory.
    Fedorov DG; Ishimura K; Ishida T; Kitaura K; Pulay P; Nagase S
    J Comput Chem; 2007 Jul; 28(9):1476-1484. PubMed ID: 17330884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method.
    Fedorov DG; Kitaura K
    J Chem Phys; 2004 Aug; 121(6):2483-90. PubMed ID: 15281845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular tailoring approach in conjunction with MP2 and Ri-MP2 codes: A comparison with fragment molecular orbital method.
    Rahalkar AP; Katouda M; Gadre SR; Nagase S
    J Comput Chem; 2010 Oct; 31(13):2405-18. PubMed ID: 20652984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytic energy gradient for second-order Møller-Plesset perturbation theory based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Ishimura K; Kitaura K
    J Chem Phys; 2011 Jul; 135(4):044110. PubMed ID: 21806093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of RI-MP2 auxiliary basis functions for 6-31G** and 6-311G** basis sets for first-, second-, and third-row elements.
    Tanaka M; Katouda M; Nagase S
    J Comput Chem; 2013 Nov; 34(29):2568-75. PubMed ID: 24078462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiconfiguration self-consistent-field theory based upon the fragment molecular orbital method.
    Fedorov DG; Kitaura K
    J Chem Phys; 2005 Feb; 122(5):54108. PubMed ID: 15740311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RI-MP2 Gradient Calculation of Large Molecules Using the Fragment Molecular Orbital Method.
    Ishikawa T; Kuwata K
    J Phys Chem Lett; 2012 Feb; 3(3):375-9. PubMed ID: 26285854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular recognition mechanism of FK506 binding protein: an all-electron fragment molecular orbital study.
    Nakanishi I; Fedorov DG; Kitaura K
    Proteins; 2007 Jul; 68(1):145-58. PubMed ID: 17387719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping Interaction Energies in Chorismate Mutase with the Fragment Molecular Orbital Method.
    Pruitt SR; Steinmann C
    J Phys Chem A; 2017 Mar; 121(8):1797-1807. PubMed ID: 28177633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient linear-scaling second-order Møller-Plesset perturbation theory: The divide-expand-consolidate RI-MP2 model.
    Baudin P; Ettenhuber P; Reine S; Kristensen K; Kjærgaard T
    J Chem Phys; 2016 Feb; 144(5):054102. PubMed ID: 26851903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved algorithm for analytical gradient evaluation in resolution-of-the-identity second-order Møller-Plesset perturbation theory: application to alanine tetrapeptide conformational analysis.
    Distasio RA; Steele RP; Rhee YM; Shao Y; Head-Gordon M
    J Comput Chem; 2007 Apr; 28(5):839-56. PubMed ID: 17219361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multilayer formulation of the fragment molecular orbital method (FMO).
    Fedorov DG; Ishida T; Kitaura K
    J Phys Chem A; 2005 Mar; 109(11):2638-46. PubMed ID: 16833570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trends in Two- and Three-Body Effects in Multiscale Clusters of Ionic Liquids.
    Halat P; Seeger ZL; Barrera Acevedo S; Izgorodina EI
    J Phys Chem B; 2017 Jan; 121(3):577-588. PubMed ID: 27991797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Resolution-Of-The-Identity Implementation of the Local Triatomics-In-Molecules Model for Second-Order Møller-Plesset Perturbation Theory with Application to Alanine Tetrapeptide Conformational Energies.
    DiStasio RA; Jung Y; Head-Gordon M
    J Chem Theory Comput; 2005 Sep; 1(5):862-76. PubMed ID: 26641903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient and Accurate Methods for the Geometry Optimization of Water Clusters: Application of Analytic Gradients for the Two-Body:Many-Body QM:QM Fragmentation Method to (H2O)n, n = 3-10.
    Bates DM; Smith JR; Tschumper GS
    J Chem Theory Comput; 2011 Sep; 7(9):2753-60. PubMed ID: 26605466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytic energy gradients for the orbital-optimized second-order Møller-Plesset perturbation theory.
    Bozkaya U; Sherrill CD
    J Chem Phys; 2013 May; 138(18):184103. PubMed ID: 23676025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approaching the complete-basis limit with a truncated many-body expansion.
    Richard RM; Lao KU; Herbert JM
    J Chem Phys; 2013 Dec; 139(22):224102. PubMed ID: 24329051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method.
    Nagata T; Fedorov DG; Li H; Kitaura K
    J Chem Phys; 2012 May; 136(20):204112. PubMed ID: 22667545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular gradient for second-order Møller-Plesset perturbation theory using the divide-expand-consolidate (DEC) scheme.
    Kristensen K; Jørgensen P; Jansík B; Kjærgaard T; Reine S
    J Chem Phys; 2012 Sep; 137(11):114102. PubMed ID: 22998244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of the inner-shell contribution to the correlation energy through DLPNO-CEPA/1 and scaled same-spin second-order Møller-Plesset perturbation theory.
    Sánchez HR
    J Comput Chem; 2020 Apr; 41(10):1012-1017. PubMed ID: 31975421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.