BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 17330895)

  • 1. The energetics of i-DNA tetraplex structures formed intermolecularly by d(TC5) and intramolecularly by d[(C5T3)3C5].
    Völker J; Klump HH; Breslauer KJ
    Biopolymers; 2007 Jun; 86(2):136-47. PubMed ID: 17330895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic properties of a conformationally constrained intramolecular DNA triple helix.
    Völker J; Osborne SE; Glick GD; Breslauer KJ
    Biochemistry; 1997 Jan; 36(4):756-67. PubMed ID: 9020773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unfolding of G-quadruplexes: energetic, and ion and water contributions of G-quartet stacking.
    Olsen CM; Gmeiner WH; Marky LA
    J Phys Chem B; 2006 Apr; 110(13):6962-9. PubMed ID: 16571009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circular dichroism spectra of DNA quadruplexes [d(G(5)T(5))](4) as formed with G(4) and T(4) tetrads and [d(G(5)T(5)). d(A(5)C(5))]2 as formed with Watson-Crick-like (G-C)(2) and (T-A)(2) tetrads.
    Ito H; Tanaka S; Miyasaka M
    Biopolymers; 2002 Oct; 65(2):61-80. PubMed ID: 12209457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural competition involving G-quadruplex DNA and its complement.
    Li W; Miyoshi D; Nakano S; Sugimoto N
    Biochemistry; 2003 Oct; 42(40):11736-44. PubMed ID: 14529284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics and structure of a DNA tetraplex: a spectroscopic and calorimetric study of the tetramolecular complexes of d(TG3T) and d(TG3T2G3T).
    Jin R; Gaffney BL; Wang C; Jones RA; Breslauer KJ
    Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8832-6. PubMed ID: 1528900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fidelity of binding of the guanidinium nucleic acid (DNG) d(Tg)4-T-azido with short strand DNA oligomers (A5G3A5, GA4G3A4G, G2A3G3A3G2, G2A2G5A2G2). A kinetic and thermodynamic study.
    Blaskó A; Minyat EE; Dempcy RO; Bruice TC
    Biochemistry; 1997 Jun; 36(25):7821-31. PubMed ID: 9201925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unfolding thermodynamics of intramolecular G-quadruplexes: base sequence contributions of the loops.
    Olsen CM; Lee HT; Marky LA
    J Phys Chem B; 2009 Mar; 113(9):2587-95. PubMed ID: 19014184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic characterization of a triple-helical three-way junction containing a Hoogsteen branch point.
    Hüsler PL; Klump HH
    Arch Biochem Biophys; 1995 Sep; 322(1):149-66. PubMed ID: 7574670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic and thermodynamic studies of DNA duplexes containing alpha-anomeric C, A, and G nucleotides and polarity reversals: coexistence of localized parallel and antiparallel DNA.
    Aramini JM; van de Sande JH; Germann MW
    Biochemistry; 1997 Aug; 36(32):9715-25. PubMed ID: 9245403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic and calorimetric characterizations of DNA duplexes containing 2-aminopurine.
    Law SM; Eritja R; Goodman MF; Breslauer KJ
    Biochemistry; 1996 Sep; 35(38):12329-37. PubMed ID: 8823167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydration regulates thermodynamics of G-quadruplex formation under molecular crowding conditions.
    Miyoshi D; Karimata H; Sugimoto N
    J Am Chem Soc; 2006 Jun; 128(24):7957-63. PubMed ID: 16771510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The contribution of DNA single-stranded order to the thermodynamics of duplex formation.
    Vesnaver G; Breslauer KJ
    Proc Natl Acad Sci U S A; 1991 May; 88(9):3569-73. PubMed ID: 2023903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the heat capacity change in understanding and modeling melting thermodynamics of complementary duplexes containing standard and nucleobase-modified LNA.
    Hughesman CB; Turner RF; Haynes CA
    Biochemistry; 2011 Jun; 50(23):5354-68. PubMed ID: 21548576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydration regulates the thermodynamic stability of DNA structures under molecular crowding conditions.
    Miyoshi D; Karimata H; Sugimoto N
    Nucleosides Nucleotides Nucleic Acids; 2007; 26(6-7):589-95. PubMed ID: 18066861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of DNA duplexes containing GG, CC, AA, and TT mismatches.
    Tikhomirova A; Beletskaya IV; Chalikian TV
    Biochemistry; 2006 Sep; 45(35):10563-71. PubMed ID: 16939208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diverse polymorphism of G-quadruplexes as a kinetic phenomenon.
    Prislan I; Lah J; Vesnaver G
    J Am Chem Soc; 2008 Oct; 130(43):14161-9. PubMed ID: 18826223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects for the incorporation of five-atom thioacetamido nucleic acid (TANA) backbone on hybridization thermodynamics and kinetics of DNA duplexes.
    Kaur H; Arora A; Gogoi K; Solanke P; Gunjal AD; Kumar VA; Maiti S
    J Phys Chem B; 2009 Mar; 113(9):2944-51. PubMed ID: 19708120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of an exocyclic cytosine adduct on DNA duplex properties: significant thermodynamic consequences despite modest lesion-induced structural alterations.
    Gelfand CA; Plum GE; Grollman AP; Johnson F; Breslauer KJ
    Biochemistry; 1998 Sep; 37(36):12507-12. PubMed ID: 9730823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The energetics of HMG box interactions with DNA: thermodynamic description of the target DNA duplexes.
    Jelesarov I; Crane-Robinson C; Privalov PL
    J Mol Biol; 1999 Dec; 294(4):981-95. PubMed ID: 10588901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.