BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 17331177)

  • 1. Ontogenetic relationships between in vivo strain environment, bone histomorphometry and growth in the goat radius.
    Main RP
    J Anat; 2007 Mar; 210(3):272-93. PubMed ID: 17331177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ontogenetic patterns of limb loading, in vivo bone strains and growth in the goat radius.
    Main RP; Biewener AA
    J Exp Biol; 2004 Jul; 207(Pt 15):2577-88. PubMed ID: 15201290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo bone strain and ontogenetic growth patterns in relation to life-history strategies and performance in two vertebrate taxa: goats and emu.
    Main RP; Biewener AA
    Physiol Biochem Zool; 2006; 79(1):57-72. PubMed ID: 16380928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional associations between collagen fibre orientation and locomotor strain direction in cortical bone of the equine radius.
    Riggs CM; Lanyon LE; Boyde A
    Anat Embryol (Berl); 1993 Mar; 187(3):231-8. PubMed ID: 8470823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain gradients correlate with sites of periosteal bone formation.
    Gross TS; Edwards JL; McLeod KJ; Rubin CT
    J Bone Miner Res; 1997 Jun; 12(6):982-8. PubMed ID: 9169359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Childhood cortical porosity is related to microstructural properties of the bone-muscle junction.
    Schnitzler CM
    J Bone Miner Res; 2015 Jan; 30(1):144-55. PubMed ID: 25042978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic anisotropy and collagen orientation of osteonal bone are dependent on the mechanical strain distribution.
    Takano Y; Turner CH; Owan I; Martin RB; Lau ST; Forwood MR; Burr DB
    J Orthop Res; 1999 Jan; 17(1):59-66. PubMed ID: 10073648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in osteonal micromorphology between tensile and compressive cortices of a bending skeletal system: indications of potential strain-specific differences in bone microstructure.
    Skedros JG; Mason MW; Bloebaum RD
    Anat Rec; 1994 Aug; 239(4):405-13. PubMed ID: 7978364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced quantitative imaging and biomechanical analyses of periosteal fibers in accelerated bone growth.
    Chaudhary R; Lee MS; Mubyana K; Duenwald-Kuehl S; Johnson L; Kaiser J; Vanderby R; Eliceiri KW; Corr DT; Chin MS; Li WJ; Campagnola PJ; Halanski MA
    Bone; 2016 Nov; 92():201-213. PubMed ID: 27612440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence of structural and material adaptation to specific strain features in cortical bone.
    Skedros JG; Mason MW; Nelson MC; Bloebaum RD
    Anat Rec; 1996 Sep; 246(1):47-63. PubMed ID: 8876823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical implications of collagen fibre orientation in cortical bone of the equine radius.
    Riggs CM; Vaughan LC; Evans GP; Lanyon LE; Boyde A
    Anat Embryol (Berl); 1993 Mar; 187(3):239-48. PubMed ID: 8470824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of a tension/compression skeletal system: possible strain-specific differences in the hierarchical organization of bone.
    Skedros JG; Bloebaum RD; Mason MW; Bramble DM
    Anat Rec; 1994 Aug; 239(4):396-404. PubMed ID: 7978363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ontogenetic and regional morphologic variations in the turkey ulna diaphysis: implications for functional adaptation of cortical bone.
    Skedros JG; Hunt KJ; Hughes PE; Winet H
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Jul; 273(1):609-29. PubMed ID: 12808646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The aging of Wolff's "law": ontogeny and responses to mechanical loading in cortical bone.
    Pearson OM; Lieberman DE
    Am J Phys Anthropol; 2004; Suppl 39():63-99. PubMed ID: 15605390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationships among microstructural properties of bone at the human midshaft femur.
    Goldman HM; Thomas CD; Clement JG; Bromage TG
    J Anat; 2005 Feb; 206(2):127-39. PubMed ID: 15730478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone strain: a determinant of gait and speed?
    Biewener AA; Taylor CR
    J Exp Biol; 1986 Jul; 123():383-400. PubMed ID: 3746195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of strain-mode-related cortical adaptation in the diaphysis of the horse radius.
    Mason MW; Skedros JG; Bloebaum RD
    Bone; 1995 Sep; 17(3):229-37. PubMed ID: 8541135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial distribution of osteocyte lacunae in equine radii and third metacarpals: considerations for cellular communication, microdamage detection and metabolism.
    Skedros JG; Grunander TR; Hamrick MW
    Cells Tissues Organs; 2005; 180(4):215-36. PubMed ID: 16330878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional variability in secondary remodeling within long bone cortices of catarrhine primates: the influence of bone growth history.
    McFarlin SC; Terranova CJ; Zihlman AL; Enlow DH; Bromage TG
    J Anat; 2008 Sep; 213(3):308-24. PubMed ID: 18691379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth patterns at distal radius and tibial shaft in pubertal girls: a 2-year longitudinal study.
    Wang Q; Alén M; Nicholson P; Lyytikäinen A; Suuriniemi M; Helkala E; Suominen H; Cheng S
    J Bone Miner Res; 2005 Jun; 20(6):954-61. PubMed ID: 15883635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.