BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 17331502)

  • 1. Sprouting of CGRP primary afferents in lumbosacral spinal cord precedes emergence of bladder activity after spinal injury.
    Zinck ND; Rafuse VF; Downie JW
    Exp Neurol; 2007 Apr; 204(2):777-90. PubMed ID: 17331502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IB4 afferent sprouting contributes to bladder dysfunction in spinal rats.
    Zinck ND; Downie JW
    Exp Neurol; 2008 Oct; 213(2):293-302. PubMed ID: 18602393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Up-regulation of tyrosine kinase (Trka, Trkb) receptor expression and phosphorylation in lumbosacral dorsal root ganglia after chronic spinal cord (T8-T10) injury.
    Qiao L; Vizzard MA
    J Comp Neurol; 2002 Jul; 449(3):217-30. PubMed ID: 12115676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in galanin immunoreactivity in rat lumbosacral spinal cord and dorsal root ganglia after spinal cord injury.
    Zvarova K; Murray E; Vizzard MA
    J Comp Neurol; 2004 Aug; 475(4):590-603. PubMed ID: 15236239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The majority of bladder sensory afferents to the rat lumbosacral spinal cord are both IB4- and CGRP-positive.
    Hwang SJ; Oh JM; Valtschanoff JG
    Brain Res; 2005 Nov; 1062(1-2):86-91. PubMed ID: 16263099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity in the injured spinal cord: can we use it to advantage to reestablish effective bladder voiding and continence?
    Zinck ND; Downie JW
    Prog Brain Res; 2006; 152():147-62. PubMed ID: 16198699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in pituitary adenylate cyclase activating polypeptide expression in urinary bladder pathways after spinal cord injury.
    Zvarova K; Dunleavy JD; Vizzard MA
    Exp Neurol; 2005 Mar; 192(1):46-59. PubMed ID: 15698618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurochemical plasticity and the role of neurotrophic factors in bladder reflex pathways after spinal cord injury.
    Vizzard MA
    Prog Brain Res; 2006; 152():97-115. PubMed ID: 16198696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient suppression of the vesicular acetylcholine transporter in urinary bladder pathways following spinal cord injury.
    Takahara Y; Maeda M; Nakatani T; Kiyama H
    Brain Res; 2007 Mar; 1137(1):20-8. PubMed ID: 17229408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of intravesical electrical stimulation on bladder function and synaptic neurotransmission in the rat spinal cord after spinal cord injury.
    Hong CH; Lee HY; Jin MH; Noh JY; Lee BH; Han SW
    BJU Int; 2009 Apr; 103(8):1136-41. PubMed ID: 19021629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of capsaicin-sensitive afferent fibers in the lower urinary tract dysfunction induced by chronic spinal cord injury in rats.
    Cheng CL; de Groat WC
    Exp Neurol; 2004 Jun; 187(2):445-54. PubMed ID: 15144870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal cord injury and anti-NGF treatment results in changes in CGRP density and distribution in the dorsal horn in the rat.
    Christensen MD; Hulsebosch CE
    Exp Neurol; 1997 Oct; 147(2):463-75. PubMed ID: 9344570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pain with no gain: allodynia following neural stem cell transplantation in spinal cord injury.
    Macias MY; Syring MB; Pizzi MA; Crowe MJ; Alexanian AR; Kurpad SN
    Exp Neurol; 2006 Oct; 201(2):335-48. PubMed ID: 16839548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal cord injury-induced expression of TrkA, TrkB, phosphorylated CREB, and c-Jun in rat lumbosacral dorsal root ganglia.
    Qiao LY; Vizzard MA
    J Comp Neurol; 2005 Feb; 482(2):142-54. PubMed ID: 15611995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central inhibitory effect of intravesically applied botulinum toxin A in chronic spinal cord injury.
    Munoz A; Somogyi GT; Boone TB; Smith CP
    Neurourol Urodyn; 2011 Sep; 30(7):1376-81. PubMed ID: 21509809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct evidence of primary afferent sprouting in distant segments following spinal cord injury in the rat: colocalization of GAP-43 and CGRP.
    Ondarza AB; Ye Z; Hulsebosch CE
    Exp Neurol; 2003 Nov; 184(1):373-80. PubMed ID: 14637107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transplants of fibroblasts expressing BDNF and NT-3 promote recovery of bladder and hindlimb function following spinal contusion injury in rats.
    Mitsui T; Fischer I; Shumsky JS; Murray M
    Exp Neurol; 2005 Aug; 194(2):410-31. PubMed ID: 16022868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A re-assessment of the consequences of delayed transplantation of olfactory lamina propria following complete spinal cord transection in rats.
    Steward O; Sharp K; Selvan G; Hadden A; Hofstadter M; Au E; Roskams J
    Exp Neurol; 2006 Apr; 198(2):483-99. PubMed ID: 16494866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of detrusor-sphincter dyssynergia by immunoneutralization of nerve growth factor in lumbosacral spinal cord in spinal cord injured rats.
    Seki S; Sasaki K; Igawa Y; Nishizawa O; Chancellor MB; De Groat WC; Yoshimura N
    J Urol; 2004 Jan; 171(1):478-82. PubMed ID: 14665959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanosensitive primary bladder afferent activity in rats with and without spinal cord transection.
    Iijima K; Igawa Y; Wyndaele JJ; De Wachter S
    J Urol; 2009 Nov; 182(5):2504-10. PubMed ID: 19765765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.