These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Global and regional cerebral blood flow in neonatal piglets undergoing pulsatile cardiopulmonary bypass with continuous perfusion at 25 degrees C and circulatory arrest at 18 degrees C. Undar A; Masai T; Yang SQ; Eichstaedt HC; McGarry MC; Vaughn WK; Goddard-Finegold J; Fraser CD Perfusion; 2001 Nov; 16(6):503-10. PubMed ID: 11761090 [TBL] [Abstract][Full Text] [Related]
4. Hypothermic extracorporeal circulation in immature swine: a comparison of continuous cardiopulmonary bypass, selective antegrade cerebral perfusion and circulatory arrest. Sasaki H; Guleserian KJ; Rose R; Fotiadis C; Boyer PJ; Forbess JM Eur J Cardiothorac Surg; 2009 Dec; 36(6):992-7. PubMed ID: 19716708 [TBL] [Abstract][Full Text] [Related]
5. Selective cerebral perfusion: real-time evidence of brain oxygen and energy metabolism preservation. Salazar JD; Coleman RD; Griffith S; McNeil JD; Steigelman M; Young H; Hensler B; Dixon P; Calhoon J; Serrano F; DiGeronimo R Ann Thorac Surg; 2009 Jul; 88(1):162-9. PubMed ID: 19559218 [TBL] [Abstract][Full Text] [Related]
6. Ischemic preconditioning reduces deep hypothermic circulatory arrest cardiopulmonary bypass induced lung injury. Dong LY; Zheng JH; Qiu XX; Yu M; Ye YZ; Shi S; Yang DC; Xie YW Eur Rev Med Pharmacol Sci; 2013 Jul; 17(13):1789-99. PubMed ID: 23852906 [TBL] [Abstract][Full Text] [Related]
7. Intermittent perfusion protects the brain during deep hypothermic circulatory arrest. Langley SM; Chai PJ; Miller SE; Mault JR; Jaggers JJ; Tsui SS; Lodge AJ; Lefurgey A; Ungerleider RM Ann Thorac Surg; 1999 Jul; 68(1):4-12; discussion 12-3. PubMed ID: 10421107 [TBL] [Abstract][Full Text] [Related]
8. Brain oxygen and metabolism is dependent on the rate of low-flow cardiopulmonary bypass following circulatory arrest in newborn piglets. Pastuszko P; Liu H; Mendoza-Paredes A; Schultz SE; Markowitz SD; Greeley WJ; Wilson DF; Pastuszko A Eur J Cardiothorac Surg; 2007 May; 31(5):899-905. PubMed ID: 17336082 [TBL] [Abstract][Full Text] [Related]
9. Myocardial contractility and relaxation after deep hypothermic circulatory arrest in a neonatal piglet model. Tirilomis T; Popov AF; Liakopoulos OJ; Schmitto JD; Bensch M; Steinke K; Coskun KO; Schoendube FA Artif Organs; 2012 Jan; 36(1):101-5. PubMed ID: 21790676 [TBL] [Abstract][Full Text] [Related]
10. Early changes in cerebral oxidative stress and apoptotic neuronal injury after various flows for selective cerebral perfusion in piglets. Chen Y; Liu J; Wang S; Ji B; Tang Y; Wu A; Zhou C; Long C Perfusion; 2012 Sep; 27(5):419-25. PubMed ID: 22611025 [TBL] [Abstract][Full Text] [Related]
11. Deep hypothermic circulatory arrest during the arterial switch operation is associated with reduction in cerebral oxygen extraction but no increase in white matter injury. Drury PP; Gunn AJ; Bennet L; Ganeshalingham A; Finucane K; Buckley D; Beca J J Thorac Cardiovasc Surg; 2013 Dec; 146(6):1327-33. PubMed ID: 23499473 [TBL] [Abstract][Full Text] [Related]
12. Neurologic recovery after deep hypothermic circulatory arrest in rats: A description of a long-term survival model without blood priming. Liu M; Zeng Q; Li Y; Liu G; Ji B Artif Organs; 2019 Jun; 43(6):551-560. PubMed ID: 30536407 [TBL] [Abstract][Full Text] [Related]
13. Effects of perfusion mode on regional and global organ blood flow in a neonatal piglet model. Undar A; Masai T; Yang SQ; Goddard-Finegold J; Frazier OH; Fraser CD Ann Thorac Surg; 1999 Oct; 68(4):1336-42; discussion 1342-3. PubMed ID: 10543503 [TBL] [Abstract][Full Text] [Related]
14. Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate--a new concept. Allen BS; Veluz JS; Buckberg GD; Aeberhard E; Ignarro LJ J Thorac Cardiovasc Surg; 2003 Mar; 125(3):625-32. PubMed ID: 12658205 [TBL] [Abstract][Full Text] [Related]
15. Is selective antegrade cerebral perfusion superior to retrograde cerebral perfusion for brain protection during deep hypothermic circulatory arrest? Metabolic evidence from microdialysis. Liang MY; Tang ZX; Chen GX; Rong J; Yao JP; Chen Z; Wu ZK Crit Care Med; 2014 May; 42(5):e319-28. PubMed ID: 24561569 [TBL] [Abstract][Full Text] [Related]
16. Intermittent whole-body perfusion with "somatoplegia' versus blood perfusate to extend duration of circulatory arrest. Miura T; Laussen P; Lidov HG; DuPlessis A; Shin'oka T; Jonas RA Circulation; 1996 Nov; 94(9 Suppl):II56-62. PubMed ID: 8901720 [TBL] [Abstract][Full Text] [Related]
17. Proteomics of cerebral injury in a neonatal model of cardiopulmonary bypass with deep hypothermic circulatory arrest. Sheikh AM; Barrett C; Villamizar N; Alzate O; Miller S; Shelburne J; Lodge A; Lawson J; Jaggers J J Thorac Cardiovasc Surg; 2006 Oct; 132(4):820-8. PubMed ID: 17000293 [TBL] [Abstract][Full Text] [Related]
19. Hyperoxia management during deep hypothermia for cerebral protection in circulatory arrest rabbit model. Wang Q; Yang J; Long C; Zhao J; Li Y; Xue Q; Cheng L; Cheng W ASAIO J; 2012; 58(4):330-6. PubMed ID: 22581033 [TBL] [Abstract][Full Text] [Related]
20. Antegrade cerebral perfusion during deep hypothermia circulatory arrest attenuates the apoptosis of neurons in porcine hippocampus. Zhao R; Cui Q; Yu SQ; Sun GC; Wang HB; Jin ZX; Gu CH; Yi DH Heart Surg Forum; 2009 Aug; 12(4):E219-24. PubMed ID: 19683993 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]