These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 17331899)

  • 1. Mapping the environmental limitations to growth of coastal Douglas-fir stands on Vancouver Island, British Columbia.
    Coops NC; Coggins SB; Kurz WA
    Tree Physiol; 2007 Jun; 27(6):805-15. PubMed ID: 17331899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forest stand productivity derived from site conditions: an assessment of old Douglas-fir stands (
    Eckhart T; Pötzelsberger E; Koeck R; Thom D; Lair GJ; van Loo M; Hasenauer H
    Ann For Sci; 2019; 76(1):19. PubMed ID: 30881192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany.
    Vitali V; Büntgen U; Bauhus J
    Glob Chang Biol; 2017 Dec; 23(12):5108-5119. PubMed ID: 28556403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of inbreeding on coastal Douglas fir growth and yield in operational plantations: a model-based approach.
    Wang T; Aitken SN; Woods JH; Polsson K; Magnussen S
    Theor Appl Genet; 2004 Apr; 108(6):1162-71. PubMed ID: 15067403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forests may need centuries to recover their original productivity after continuous intensive management: an example from Douglas-fir stands.
    Blanco JA
    Sci Total Environ; 2012 Oct; 437():91-103. PubMed ID: 22917531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Climate on Douglas-fir (
    Levanič T; Štraus H
    Plants (Basel); 2022 Jun; 11(12):. PubMed ID: 35736722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probabilistic Provenance Detection and Management Pathways for
    Marchi M; Cocozza C
    Plants (Basel); 2021 Jan; 10(2):. PubMed ID: 33498675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Species distribution models may misdirect assisted migration: insights from the introduction of Douglas-fir to Europe.
    Boiffin J; Badeau V; Bréda N
    Ecol Appl; 2017 Mar; 27(2):446-457. PubMed ID: 28207174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water availability as dominant control of heat stress responses in two contrasting tree species.
    Ruehr NK; Gast A; Weber C; Daub B; Arneth A
    Tree Physiol; 2016 Feb; 36(2):164-78. PubMed ID: 26491055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survival, early growth and impact of damage by late-spring frost and winter desiccation on Douglas-fir seedlings in southern Sweden.
    Malmqvist C; Wallertz K; Johansson U
    New For (Dordr); 2018; 49(6):723-736. PubMed ID: 30416236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continental-scale tree-ring-based projection of Douglas-fir growth: Testing the limits of space-for-time substitution.
    Klesse S; DeRose RJ; Babst F; Black BA; Anderegg LDL; Axelson J; Ettinger A; Griesbauer H; Guiterman CH; Harley G; Harvey JE; Lo YH; Lynch AM; O'Connor C; Restaino C; Sauchyn D; Shaw JD; Smith DJ; Wood L; Villanueva-Díaz J; Evans MEK
    Glob Chang Biol; 2020 Sep; 26(9):5146-5163. PubMed ID: 32433807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large variation in branch and branch-tip hydraulic functional traits in Douglas-fir (Pseudotsuga menziesii) approaching lower treeline.
    Condo TK; Reinhardt K
    Tree Physiol; 2019 Aug; 39(8):1461-1472. PubMed ID: 31135912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological responses of Douglas-fir to climate and forest disturbances as detected by cellulosic carbon and oxygen isotope ratios.
    Lee EH; Beedlow PA; Brooks JR; Tingey DT; Wickham C; Rugh W
    Tree Physiol; 2022 Jan; 42(1):5-25. PubMed ID: 34528693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tree-ring stable isotopes record the impact of a foliar fungal pathogen on CO(2) assimilation and growth in Douglas-fir.
    Saffell BJ; Meinzer FC; Voelker SL; Shaw DC; Brooks JR; Lachenbruch B; McKay J
    Plant Cell Environ; 2014 Jul; 37(7):1536-47. PubMed ID: 24330052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Height-growth response to climatic changes differs among populations of Douglas-fir: a novel analysis of historic data.
    Leites LP; Robinson AP; Rehfeldt GE; Marshall JD; Crookston NL
    Ecol Appl; 2012 Jan; 22(1):154-65. PubMed ID: 22471081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regional patterns of increasing Swiss needle cast impacts on Douglas-fir growth with warming temperatures.
    Lee EH; Beedlow PA; Waschmann RS; Tingey DT; Cline S; Bollman M; Wickham C; Carlile C
    Ecol Evol; 2017 Dec; 7(24):11167-11196. PubMed ID: 29299291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased water deficit decreases Douglas fir growth throughout western US forests.
    Restaino CM; Peterson DL; Littell J
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):9557-62. PubMed ID: 27503880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in net ecosystem productivity with forest age following clearcutting of a coastal Douglas-fir forest: testing a mathematical model with eddy covariance measurements along a forest chronosequence.
    Grant RF; Black TA; Humphreys ER; Morgenstern K
    Tree Physiol; 2007 Jan; 27(1):115-31. PubMed ID: 17169913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature regulation of bud-burst phenology within and among years in a young Douglas-fir (Pseudotsuga menziesii) plantation in western Washington, USA.
    Bailey JD; Harrington CA
    Tree Physiol; 2006 Apr; 26(4):421-30. PubMed ID: 16414921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate-related genetic variation in drought-resistance of Douglas-fir (Pseudotsuga menziesii).
    Bansal S; Harrington CA; Gould PJ; St Clair JB
    Glob Chang Biol; 2015 Feb; 21(2):947-58. PubMed ID: 25156589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.