These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 17332016)

  • 21. Conservation of polyamine regulation by translational frameshifting from yeast to mammals.
    Ivanov IP; Matsufuji S; Murakami Y; Gesteland RF; Atkins JF
    EMBO J; 2000 Apr; 19(8):1907-17. PubMed ID: 10775274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reading two bases twice: mammalian antizyme frameshifting in yeast.
    Matsufuji S; Matsufuji T; Wills NM; Gesteland RF; Atkins JF
    EMBO J; 1996 Mar; 15(6):1360-70. PubMed ID: 8635469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nucleotide sequence of ornithine decarboxylase antizyme cDNA from Xenopus laevis.
    Ichiba T; Matsufuji S; Miyazaki Y; Hayashi S
    Biochim Biophys Acta; 1995 May; 1262(1):83-6. PubMed ID: 7772605
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discovery of a spermatogenesis stage-specific ornithine decarboxylase antizyme: antizyme 3.
    Ivanov IP; Rohrwasser A; Terreros DA; Gesteland RF; Atkins JF
    Proc Natl Acad Sci U S A; 2000 Apr; 97(9):4808-13. PubMed ID: 10781085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification and analysis of the site of -1 ribosomal frameshifting in red clover necrotic mosaic virus.
    Kim KH; Lommel SA
    Virology; 1994 May; 200(2):574-82. PubMed ID: 8178444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Upstream stimulators for recoding.
    Larsen B; Peden J; Matsufuji S; Matsufuji T; Brady K; Maldonado R; Wills NM; Fayet O; Atkins JF; Gesteland RF
    Biochem Cell Biol; 1995; 73(11-12):1123-9. PubMed ID: 8722029
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequence element required for efficient -1 ribosomal frameshifting in red clover necrotic mosaic dianthovirus.
    Kim KH; Lommel SA
    Virology; 1998 Oct; 250(1):50-9. PubMed ID: 9770419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Translation efficiency affects the sequence-independent +1 ribosomal frameshifting by polyamines.
    Oguro A; Shigeta T; Machida K; Suzuki T; Iwamoto T; Matsufuji S; Imataka H
    J Biochem; 2020 Aug; 168(2):139-149. PubMed ID: 32181810
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting.
    Chen X; Chamorro M; Lee SI; Shen LX; Hines JV; Tinoco I; Varmus HE
    EMBO J; 1995 Feb; 14(4):842-52. PubMed ID: 7882986
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of the roles of tRNA structure, ribosomal protein L9, and the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA.
    Herr AJ; Nelson CC; Wills NM; Gesteland RF; Atkins JF
    J Mol Biol; 2001 Jun; 309(5):1029-48. PubMed ID: 11399077
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A -1 ribosomal frameshift element that requires base pairing across four kilobases suggests a mechanism of regulating ribosome and replicase traffic on a viral RNA.
    Barry JK; Miller WA
    Proc Natl Acad Sci U S A; 2002 Aug; 99(17):11133-8. PubMed ID: 12149516
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the mechanism of leftward frameshifting at several hungry codons.
    Barak Z; Lindsley D; Gallant J
    J Mol Biol; 1996 Mar; 256(4):676-84. PubMed ID: 8642590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of putative programmed -1 ribosomal frameshift signals in large DNA databases.
    Hammell AB; Taylor RC; Peltz SW; Dinman JD
    Genome Res; 1999 May; 9(5):417-27. PubMed ID: 10330121
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Peptidyl-tRNAs promote translational frameshifting.
    Vimaladithan A; Pande S; Zhao H; Farabaugh PJ
    Nucleic Acids Symp Ser; 1995; (33):190-3. PubMed ID: 8643366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Maintaining the ribosomal reading frame: the influence of the E site during translational regulation of release factor 2.
    Márquez V; Wilson DN; Tate WP; Triana-Alonso F; Nierhaus KH
    Cell; 2004 Jul; 118(1):45-55. PubMed ID: 15242643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polyamine analogs with xylene rings induce antizyme frameshifting, reduce ODC activity, and deplete cellular polyamines.
    Petros LM; Graminski GF; Robinson S; Burns MR; Kisiel N; Gesteland RF; Atkins JF; Kramer DL; Howard MT; Weeks RS
    J Biochem; 2006 Nov; 140(5):657-66. PubMed ID: 16998202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the frameshift signal of Edr, a mammalian example of programmed -1 ribosomal frameshifting.
    Manktelow E; Shigemoto K; Brierley I
    Nucleic Acids Res; 2005; 33(5):1553-63. PubMed ID: 15767280
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discovery of frameshifting in Alphavirus 6K resolves a 20-year enigma.
    Firth AE; Chung BY; Fleeton MN; Atkins JF
    Virol J; 2008 Sep; 5():108. PubMed ID: 18822126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Saturation mutagenesis of a +1 programmed frameshift-inducing mRNA sequence derived from a yeast retrotransposon.
    Guarraia C; Norris L; Raman A; Farabaugh PJ
    RNA; 2007 Nov; 13(11):1940-7. PubMed ID: 17881742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RefSeq curation and annotation of antizyme and antizyme inhibitor genes in vertebrates.
    Rajput B; Murphy TD; Pruitt KD
    Nucleic Acids Res; 2015 Sep; 43(15):7270-9. PubMed ID: 26170238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.