BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 17332053)

  • 1. Clinical significance of preoperative fibre-tracking to preserve the affected pyramidal tracts during resection of brain tumours in patients with preoperative motor weakness.
    Mikuni N; Okada T; Enatsu R; Miki Y; Urayama S; Takahashi JA; Nozaki K; Fukuyama H; Hashimoto N
    J Neurol Neurosurg Psychiatry; 2007 Jul; 78(7):716-21. PubMed ID: 17332053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical impact of integrated functional neuronavigation and subcortical electrical stimulation to preserve motor function during resection of brain tumors.
    Mikuni N; Okada T; Enatsu R; Miki Y; Hanakawa T; Urayama S; Kikuta K; Takahashi JA; Nozaki K; Fukuyama H; Hashimoto N
    J Neurosurg; 2007 Apr; 106(4):593-8. PubMed ID: 17432708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intraoperative use of diffusion tensor imaging-based tractography for resection of gliomas located near the pyramidal tract: comparison with subcortical stimulation mapping and contribution to surgical outcomes.
    Vassal F; Schneider F; Nuti C
    Br J Neurosurg; 2013 Oct; 27(5):668-75. PubMed ID: 23458557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison between motor evoked potential recording and fiber tracking for estimating pyramidal tracts near brain tumors.
    Mikuni N; Okada T; Nishida N; Taki J; Enatsu R; Ikeda A; Miki Y; Hanakawa T; Fukuyama H; Hashimoto N
    J Neurosurg; 2007 Jan; 106(1):128-33. PubMed ID: 17236498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved nTMS- and DTI-derived CST tractography through anatomical ROI seeding on anterior pontine level compared to internal capsule.
    Weiss C; Tursunova I; Neuschmelting V; Lockau H; Nettekoven C; Oros-Peusquens AM; Stoffels G; Rehme AK; Faymonville AM; Shah NJ; Langen KJ; Goldbrunner R; Grefkes C
    Neuroimage Clin; 2015; 7():424-37. PubMed ID: 25685709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraoperative mapping and monitoring of the corticospinal tracts with neurophysiological assessment and 3-dimensional ultrasonography-based navigation. Clinical article.
    Nossek E; Korn A; Shahar T; Kanner AA; Yaffe H; Marcovici D; Ben-Harosh C; Ben Ami H; Weinstein M; Shapira-Lichter I; Constantini S; Hendler T; Ram Z
    J Neurosurg; 2011 Mar; 114(3):738-46. PubMed ID: 20799862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraoperative subcortical motor evoked potential stimulation: how close is the corticospinal tract?
    Shiban E; Krieg SM; Haller B; Buchmann N; Obermueller T; Boeckh-Behrens T; Wostrack M; Meyer B; Ringel F
    J Neurosurg; 2015 Sep; 123(3):711-20. PubMed ID: 26047412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Function magnetic resonance imaging and diffusion tensor tractography in patients with brain gliomas involving motor areas: clinical application and outcome].
    Li ZX; Dai JP; Jiang T; Li SW; Sun YL; Liang XL; Gao PY
    Zhonghua Wai Ke Za Zhi; 2006 Sep; 44(18):1275-9. PubMed ID: 17147897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion tensor imaging tractography and intraoperative neurophysiological monitoring in surgery of intracranial tumors located near the pyramidal tract.
    Zhukov VY; Goryaynov SA; Ogurtsova AA; Ageev IS; Protskiy SV; Pronin IN; Tonoyan AS; Kobyakov GL; Nenashev EA; Smirnov AS; Batalov AI; Potapov AA
    Zh Vopr Neirokhir Im N N Burdenko; 2016; 80(1):5-18. PubMed ID: 27029327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional MRI vs. navigated TMS to optimize M1 seed volume delineation for DTI tractography. A prospective study in patients with brain tumours adjacent to the corticospinal tract.
    Weiss Lucas C; Tursunova I; Neuschmelting V; Nettekoven C; Oros-Peusquens AM; Stoffels G; Faymonville AM; Jon SN; Langen KJ; Lockau H; Goldbrunner R; Grefkes C
    Neuroimage Clin; 2017; 13():297-309. PubMed ID: 28050345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the pyramidal tract by neuronavigation based on intraoperative diffusion-weighted imaging combined with subcortical stimulation.
    Ozawa N; Muragaki Y; Nakamura R; Iseki H
    Stereotact Funct Neurosurg; 2009; 87(1):18-24. PubMed ID: 19039259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraoperative tractography and motor evoked potential (MEP) monitoring in surgery for gliomas around the corticospinal tract.
    Maesawa S; Fujii M; Nakahara N; Watanabe T; Wakabayashi T; Yoshida J
    World Neurosurg; 2010 Jul; 74(1):153-61. PubMed ID: 21300007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the pyramidal tract by neuronavigation based on intraoperative magnetic resonance tractography: correlation with subcortical stimulation.
    Bozzao A; Romano A; Angelini A; D'Andrea G; Calabria LF; Coppola V; Mastronardi L; Fantozzi LM; Ferrante L
    Eur Radiol; 2010 Oct; 20(10):2475-81. PubMed ID: 20455066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surgical results of tumor resection using tractography-integrated navigation-guided fence-post catheter techniques and motor-evoked potentials for preservation of motor function in patients with glioblastomas near the pyramidal tracts.
    Ohue S; Kohno S; Inoue A; Yamashita D; Matsumoto S; Suehiro S; Kumon Y; Kikuchi K; Ohnishi T
    Neurosurg Rev; 2015 Apr; 38(2):293-306; discussion 306-7. PubMed ID: 25403686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy of diffusion tensor magnetic resonance imaging-based tractography for surgery of gliomas near the pyramidal tract: a significant correlation between subcortical electrical stimulation and postoperative tractography.
    Ohue S; Kohno S; Inoue A; Yamashita D; Harada H; Kumon Y; Kikuchi K; Miki H; Ohnishi T
    Neurosurgery; 2012 Feb; 70(2):283-93; discussion 294. PubMed ID: 21811189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An intraoperative motor tract positioning method in brain tumor surgery: technical note.
    Yamaguchi F; Ten H; Higuchi T; Omura T; Kojima T; Adachi K; Kitamura T; Kobayashi S; Takahashi H; Teramoto A; Morita A
    J Neurosurg; 2018 Sep; 129(3):576-582. PubMed ID: 29171804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraoperative three-dimensional visualization of the pyramidal tract in a neuronavigation system (PTV) reliably predicts true position of principal motor pathways.
    Coenen VA; Krings T; Axer H; Weidemann J; Kränzlein H; Hans FJ; Thron A; Gilsbach JM; Rohde V
    Surg Neurol; 2003 Nov; 60(5):381-90; discussion 390. PubMed ID: 14572954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraoperative diffusion-weighted imaging for visualization of the pyramidal tracts. Part II: clinical study of usefulness and efficacy.
    Ozawa N; Muragaki Y; Nakamura R; Lseki H
    Minim Invasive Neurosurg; 2008 Apr; 51(2):67-71. PubMed ID: 18401816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors.
    Seidel K; Beck J; Stieglitz L; Schucht P; Raabe A
    J Neurosurg; 2013 Feb; 118(2):287-96. PubMed ID: 23198802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre- and Intraoperative Mapping for Tumors in the Primary Motor Cortex: Decision-Making Process in Surgical Resection.
    Lavrador JP; Ghimire P; Brogna C; Furlanetti L; Patel S; Gullan R; Ashkan K; Bhangoo R; Vergani F
    J Neurol Surg A Cent Eur Neurosurg; 2021 Jul; 82(4):333-343. PubMed ID: 32438419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.