These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 17332323)

  • 1. The p53 Isoform Deltap53 lacks intrinsic transcriptional activity and reveals the critical role of nuclear import in dominant-negative activity.
    Chan WM; Poon RY
    Cancer Res; 2007 Mar; 67(5):1959-69. PubMed ID: 17332323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Nuclear import of p53 in relation to MDM2-mediated degradation and ubiquitination].
    Li HP; Zhang YP
    Zhonghua Zhong Liu Za Zhi; 2005 Feb; 27(2):86-9. PubMed ID: 15946545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel human p53 isoform is an essential element of the ATR-intra-S phase checkpoint.
    Rohaly G; Chemnitz J; Dehde S; Nunez AM; Heukeshoven J; Deppert W; Dornreiter I
    Cell; 2005 Jul; 122(1):21-32. PubMed ID: 16009130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of p53 nuclear export through sequential changes in conformation and ubiquitination.
    Nie L; Sasaki M; Maki CG
    J Biol Chem; 2007 May; 282(19):14616-25. PubMed ID: 17371868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A transforming p53 mutant, which binds DNA, transactivates and induces apoptosis reveals a nuclear:cytoplasmic shuttling defect.
    Crook T; Parker GA; Rozycka M; Crossland S; Allday MJ
    Oncogene; 1998 Mar; 16(11):1429-41. PubMed ID: 9525742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear exclusion of p53 in a subset of tumors requires MDM2 function.
    Lu W; Pochampally R; Chen L; Traidej M; Wang Y; Chen J
    Oncogene; 2000 Jan; 19(2):232-40. PubMed ID: 10645001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleocytoplasmic shuttling of p53 is essential for MDM2-mediated cytoplasmic degradation but not ubiquitination.
    O'Keefe K; Li H; Zhang Y
    Mol Cell Biol; 2003 Sep; 23(18):6396-405. PubMed ID: 12944468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of the acidic domain of MDM2 to p53 and MDM2 stability.
    Argentini M; Barboule N; Wasylyk B
    Oncogene; 2001 Mar; 20(11):1267-75. PubMed ID: 11313871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear targeting of the betanodavirus B1 protein via two arginine-rich domains induces G1/S cell cycle arrest mediated by upregulation of p53/p21.
    Su YC; Reshi L; Chen LJ; Li WH; Chiu HW; Hong JR
    Sci Rep; 2018 Feb; 8(1):3079. PubMed ID: 29449573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The MDM2 ubiquitination signal in the DNA-binding domain of p53 forms a docking site for calcium calmodulin kinase superfamily members.
    Craig AL; Chrystal JA; Fraser JA; Sphyris N; Lin Y; Harrison BJ; Scott MT; Dornreiter I; Hupp TR
    Mol Cell Biol; 2007 May; 27(9):3542-55. PubMed ID: 17339337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MDM2 splice variants predominantly localize to the nucleoplasm mediated by a COOH-terminal nuclear localization signal.
    Schuster K; Fan L; Harris LC
    Mol Cancer Res; 2007 Apr; 5(4):403-12. PubMed ID: 17426254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerated MDM2 auto-degradation induced by DNA-damage kinases is required for p53 activation.
    Stommel JM; Wahl GM
    EMBO J; 2004 Apr; 23(7):1547-56. PubMed ID: 15029243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled access of p53 to the nucleus regulates its proteasomal degradation by MDM2.
    Davis JR; Mossalam M; Lim CS
    Mol Pharm; 2013 Apr; 10(4):1340-9. PubMed ID: 23398638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of DNA binding and transactivation in p53 by nuclear localization and phosphorylation.
    Martinez JD; Craven MT; Joseloff E; Milczarek G; Bowden GT
    Oncogene; 1997 May; 14(21):2511-20. PubMed ID: 9191051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of full-length p53 and its isoform Deltap53 in breast carcinomas in relation to mutation status and clinical parameters.
    Baumbusch LO; Myhre S; Langerød A; Bergamaschi A; Geisler SB; Lønning PE; Deppert W; Dornreiter I; Børresen-Dale AL
    Mol Cancer; 2006 Oct; 5():47. PubMed ID: 17054774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor suppressor RYBP harbors three nuclear localization signals and its cytoplasm-located mutant exerts more potent anti-cancer activities than corresponding wild type.
    Tan K; Zhang X; Cong X; Huang B; Chen H; Chen D
    Cell Signal; 2017 Jan; 29():127-137. PubMed ID: 27989698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization and activation of p53 induced by Cdk5 contributes to neuronal cell death.
    Lee JH; Kim HS; Lee SJ; Kim KT
    J Cell Sci; 2007 Jul; 120(Pt 13):2259-71. PubMed ID: 17591690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide induces phosphorylation of p53 and impairs nuclear export.
    Schneiderhan N; Budde A; Zhang Y; Brüne B
    Oncogene; 2003 May; 22(19):2857-68. PubMed ID: 12771937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mdm2 is required for inhibition of Cdk2 activity by p21, thereby contributing to p53-dependent cell cycle arrest.
    Giono LE; Manfredi JJ
    Mol Cell Biol; 2007 Jun; 27(11):4166-78. PubMed ID: 17371838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TAp73 alpha increases p53 tumor suppressor activity in thyroid cancer cells via the inhibition of Mdm2-mediated degradation.
    Malaguarnera R; Vella V; Pandini G; Sanfilippo M; Pezzino V; Vigneri R; Frasca F
    Mol Cancer Res; 2008 Jan; 6(1):64-77. PubMed ID: 18234963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.