These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Losartan attenuates modest but not strong renal vasoconstriction induced by nitric oxide inhibition. Turkstra E; Braam B; Koomans HA J Cardiovasc Pharmacol; 1998 Oct; 32(4):593-600. PubMed ID: 9781927 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of intrarenal NO stimulates renin secretion through a macula densa-mediated mechanism. Schnackenberg CG; Tabor BL; Strong MH; Granger JP Am J Physiol; 1997 Mar; 272(3 Pt 2):R879-86. PubMed ID: 9087651 [TBL] [Abstract][Full Text] [Related]
8. P2 purinoceptor saturation by adenosine triphosphate impairs renal autoregulation in dogs. Majid DS; Inscho EW; Navar LG J Am Soc Nephrol; 1999 Mar; 10(3):492-8. PubMed ID: 10073599 [TBL] [Abstract][Full Text] [Related]
9. Effects of NG-nitro-L-arginine on renal hemodynamic responses to endothelin-3 in anesthetized dogs. Yamashita Y; Yukimura T; Miura K; Okumura M; Yamanaka S; Yamamoto K J Cardiovasc Pharmacol; 1991; 17 Suppl 7():S332-4. PubMed ID: 1725372 [TBL] [Abstract][Full Text] [Related]
10. Role of Nitric oxide in the renal and systemic vasodilatory responses to platelet-activating factor in the rat, in vivo. Handa RK; Strandhoy JW; Handa SE Kidney Blood Press Res; 2003; 26(3):165-75. PubMed ID: 12886044 [TBL] [Abstract][Full Text] [Related]
11. Role of prostaglandins and nitric oxide in mediating renal response to volume expansion. Salazar FJ; Llinas MT; Gonzalez JD; Quesada T; Pinilla JM Am J Physiol; 1995 Jun; 268(6 Pt 2):R1442-8. PubMed ID: 7611520 [TBL] [Abstract][Full Text] [Related]
12. Contribution of angiotensin II to renal hemodynamic and excretory responses to nitric oxide synthesis inhibition in the rat. Takenaka T; Mitchell KD; Navar LG J Am Soc Nephrol; 1993 Oct; 4(4):1046-53. PubMed ID: 8286713 [TBL] [Abstract][Full Text] [Related]
13. Role of endothelium-derived relaxing factor in the in vivo renal vascular action of adenosine in dogs. Okumura M; Miura K; Yamashita Y; Yukimura T; Yamamoto K J Pharmacol Exp Ther; 1992 Mar; 260(3):1262-7. PubMed ID: 1545391 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of renal nitric oxide synthesis with NG-monomethyl-L-arginine and NG-nitro-L-arginine. Naess PA; Kirkebøen KA; Christensen G; Kiil F Am J Physiol; 1992 Jun; 262(6 Pt 2):F939-42. PubMed ID: 1535755 [TBL] [Abstract][Full Text] [Related]
15. Role of endothelium-derived relaxing factor in renal autoregulation in conscious dogs. Baumann JE; Persson PB; Ehmke H; Nafz B; Kirchheim HR Am J Physiol; 1992 Aug; 263(2 Pt 2):F208-13. PubMed ID: 1510118 [TBL] [Abstract][Full Text] [Related]
16. Role of prostaglandins and endothelium-derived relaxing factor on the renal response to acetylcholine. Salom MG; Lahera V; Romero JC Am J Physiol; 1991 Jan; 260(1 Pt 2):F145-9. PubMed ID: 1992776 [TBL] [Abstract][Full Text] [Related]
17. Effect on renin release of inhibiting renal nitric oxide synthesis in anaesthetized dogs. Naess PA; Christensen G; Kirkebøen KA; Kiil F Acta Physiol Scand; 1993 Jun; 148(2):137-42. PubMed ID: 8352025 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of synthesis of endothelium-derived nitric oxide in conscious dogs. Hemodynamic, renal, and hormonal effects. Elsner D; Müntze A; Kromer EP; Riegger GA Am J Hypertens; 1992 May; 5(5 Pt 1):288-91. PubMed ID: 1349812 [TBL] [Abstract][Full Text] [Related]