These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 1733299)

  • 1. Regulation of glycolytic metabolism during long-term primary culture of renal proximal tubule cells.
    Aleo MD; Schnellmann RG
    Am J Physiol; 1992 Jan; 262(1 Pt 2):F77-85. PubMed ID: 1733299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of culture conditions, culture media volumes, and glucose content on metabolic properties of renal epithelial cell cultures. Are renal cells in tissue culture hypoxic?
    Gstraunthaler G; Seppi T; Pfaller W
    Cell Physiol Biochem; 1999; 9(3):150-72. PubMed ID: 10494029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of short chain fatty acid substrates in aerobic and glycolytic metabolism in primary cultures of renal proximal tubule cells.
    Griner RD; Aleo MD; Schnellmann RG
    In Vitro Cell Dev Biol Anim; 1993 Aug; 29A(8):649-55. PubMed ID: 8376317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbohydrate metabolism by primary cultures of rabbit proximal tubules.
    Tang MJ; Suresh KR; Tannen RL
    Am J Physiol; 1989 Mar; 256(3 Pt 1):C532-9. PubMed ID: 2538063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved culture conditions stimulate gluconeogenesis in primary cultures of renal proximal tubule cells.
    Nowak G; Schnellmann RG
    Am J Physiol; 1995 Apr; 268(4 Pt 1):C1053-61. PubMed ID: 7733227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of glucose and insulin deprivation on differentiation and carbohydrate metabolism of rabbit proximal tubular cells in primary culture.
    Courjault F; Chevalier J; Leroy D; Toutain H
    Biochim Biophys Acta; 1993 Jun; 1177(2):147-59. PubMed ID: 8388735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between proliferation and glucose metabolism in primary cultures of rabbit proximal tubules.
    Tang MJ; Tannen RL
    Am J Physiol; 1990 Sep; 259(3 Pt 1):C455-61. PubMed ID: 2399968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycolytic and oxidative metabolism in primary renal proximal tubule cultures.
    Dickman KG; Mandel LJ
    Am J Physiol; 1989 Aug; 257(2 Pt 1):C333-40. PubMed ID: 2764094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decreasing glycolysis increases sensitivity to mitochondrial inhibition in primary cultures of renal proximal tubule cells.
    Griner RD; Schnellmann RG
    In Vitro Cell Dev Biol Anim; 1994 Jan; 30A(1):30-4. PubMed ID: 8193771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of glycolysis induction in primary cultures of rabbit kidney proximal tubule cells: the role of shaking, glucose and insulin.
    Monteil C; Leclere C; Dantzer F; Elkaz V; Fillastre JP; Morin JP
    Cell Biol Int; 1993 Oct; 17(10):953-60. PubMed ID: 8287026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the medium HCO3-/CO2 buffer system on differentiation and intermediary metabolism properties of rabbit proximal tubule cells in primary culture.
    Monteil C; Marouillat S; Fillastre JP; Morin JP
    Epithelial Cell Biol; 1995; 4(3):131-9. PubMed ID: 8971488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia and proliferation are primarily responsible for induction of lactate dehydrogenase activity in cultured cells.
    Nowak G; Griffin JM; Schnellmann RG
    J Toxicol Environ Health; 1996 Nov; 49(4):439-52. PubMed ID: 8931742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary cultures of rabbit renal proximal tubule cells: I. Growth and biochemical characteristics.
    Aleo MD; Taub ML; Nickerson PA; Kostyniak PJ
    In Vitro Cell Dev Biol; 1989 Sep; 25(9):776-83. PubMed ID: 2793776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restricted growth of rat kidney proximal tubule cells cultured in serum-supplemented and defined media.
    Miller JH
    J Cell Physiol; 1986 Nov; 129(2):264-72. PubMed ID: 3490482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and function of primary rabbit kidney proximal tubule cells in glucose-free serum-free medium.
    Jung JC; Lee SM; Kadakia N; Taub M
    J Cell Physiol; 1992 Feb; 150(2):243-50. PubMed ID: 1734029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic adaptation of the renal carbohydrate metabolism. II. Effects of a high carbohydrate diet on the gluconeogenic and glycolytic fluxes in the proximal and distal renal tubules.
    García-Salguero L; Lupiánez JA
    Mol Cell Biochem; 1989 Jan; 85(1):91-100. PubMed ID: 2725482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrative effects of EGF on metabolism and proliferation in renal proximal tubular cells.
    Nowak G; Schnellmann RG
    Am J Physiol; 1995 Nov; 269(5 Pt 1):C1317-25. PubMed ID: 7491924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological and biochemical characterization of the opossum kidney cell line and primary cultures of rabbit proximal tubule cells in serum-free defined medium.
    Courjault F; Gerin B; Leroy D; Chevalier J; Toutain H
    Cell Biol Int Rep; 1991 Dec; 15(12):1225-34. PubMed ID: 1802405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epidermal growth factor binding, stimulation of phosphorylation, and inhibition of gluconeogenesis in rat proximal tubule.
    Harris RC; Daniel TO
    J Cell Physiol; 1989 May; 139(2):383-91. PubMed ID: 2785525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. S-[(1 and 2)-phenyl-2-hydroxyethyl]-cysteine-induced cytotoxicity to rat renal proximal tubules.
    Chakrabarti SK; Denniel C
    Toxicol Appl Pharmacol; 1996 Apr; 137(2):285-94. PubMed ID: 8661354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.