These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17333299)

  • 21. Deconvoluting the Cu2+ binding modes of full-length prion protein.
    Klewpatinond M; Davies P; Bowen S; Brown DR; Viles JH
    J Biol Chem; 2008 Jan; 283(4):1870-81. PubMed ID: 18042548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of the copper(II) coordinating residues in the prion protein by metal-catalyzed oxidation mass spectrometry: evidence for multiple isomers at low copper(II) loadings.
    Srikanth R; Wilson J; Burns CS; Vachet RW
    Biochemistry; 2008 Sep; 47(35):9258-68. PubMed ID: 18690704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preferential Cu2+ coordination by His96 and His111 induces beta-sheet formation in the unstructured amyloidogenic region of the prion protein.
    Jones CE; Abdelraheim SR; Brown DR; Viles JH
    J Biol Chem; 2004 Jul; 279(31):32018-27. PubMed ID: 15145944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A potential mechanism for Cu2+ reduction, beta-cleavage, and beta-sheet initiation within the N-terminal domain of the prion protein: insights from density functional theory and molecular dynamics calculations.
    Pushie MJ; Vogel HJ
    J Toxicol Environ Health A; 2009; 72(17-18):1040-59. PubMed ID: 19697239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Copper binding to octarepeat peptides of the prion protein monitored by mass spectrometry.
    Whittal RM; Ball HL; Cohen FE; Burlingame AL; Prusiner SB; Baldwin MA
    Protein Sci; 2000 Feb; 9(2):332-43. PubMed ID: 10716185
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Copper coordination in the full-length, recombinant prion protein.
    Burns CS; Aronoff-Spencer E; Legname G; Prusiner SB; Antholine WE; Gerfen GJ; Peisach J; Millhauser GL
    Biochemistry; 2003 Jun; 42(22):6794-803. PubMed ID: 12779334
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Difference in redox behaviors between copper-binding octarepeat and nonoctarepeat sites in prion protein.
    Yamamoto N; Kuwata K
    J Biol Inorg Chem; 2009 Nov; 14(8):1209-18. PubMed ID: 19585160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Copper and the structural biology of the prion protein.
    Viles JH; Klewpatinond M; Nadal RC
    Biochem Soc Trans; 2008 Dec; 36(Pt 6):1288-92. PubMed ID: 19021542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural and electronic analysis of the octarepeat region of prion protein with four Cu
    Nochebuena J; Quintanar L; Vela A; Cisneros GA
    Phys Chem Chem Phys; 2021 Oct; 23(38):21568-21578. PubMed ID: 34550129
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Can copper binding to the prion protein generate a misfolded form of the protein?
    Pushie MJ; Rauk A; Jirik FR; Vogel HJ
    Biometals; 2009 Feb; 22(1):159-75. PubMed ID: 19140013
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Copper binding sites in the C-terminal domain of mouse prion protein: A hybrid (QM/MM) molecular dynamics study.
    Colombo MC; Vandevondele J; Van Doorslaer S; Laio A; Guidoni L; Rothlisberger U
    Proteins; 2008 Feb; 70(3):1084-98. PubMed ID: 17876822
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Both Met(109) and Met(112) are utilized for Cu(II) coordination by the amyloidogenic fragment of the human prion protein at physiological pH.
    Shearer J; Soh P; Lentz S
    J Inorg Biochem; 2008 Dec; 102(12):2103-13. PubMed ID: 18778855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The expanded octarepeat domain selectively binds prions and disrupts homomeric prion protein interactions.
    Leliveld SR; Dame RT; Wuite GJ; Stitz L; Korth C
    J Biol Chem; 2006 Feb; 281(6):3268-75. PubMed ID: 16352600
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Copper(II) interaction with prion peptide fragments encompassing histidine residues within and outside the octarepeat domain: speciation, stability constants and binding details.
    Osz K; Nagy Z; Pappalardo G; Di Natale G; Sanna D; Micera G; Rizzarelli E; Sóvágó I
    Chemistry; 2007; 13(25):7129-43. PubMed ID: 17566127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inter- and intra-octarepeat Cu(II) site geometries in the prion protein: implications in Cu(II) binding cooperativity and Cu(II)-mediated assemblies.
    Morante S; González-Iglesias R; Potrich C; Meneghini C; Meyer-Klaucke W; Menestrina G; Gasset M
    J Biol Chem; 2004 Mar; 279(12):11753-9. PubMed ID: 14703517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electronic properties of a PrP
    Nowakowski M; Czapla-Masztafiak J; Zhukov I; Zhukova L; Kozak M; Kwiatek WM
    Metallomics; 2019 Mar; 11(3):632-642. PubMed ID: 30756103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. β-cleavage of the human prion protein impacts Cu(II) coordination at its non-octarepeat region.
    Sánchez-López C; Quintanar L
    J Inorg Biochem; 2022 Mar; 228():111686. PubMed ID: 34929540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Copper and zinc promote interactions between membrane-anchored peptides of the metal binding domain of the prion protein.
    Kenward AG; Bartolotti LJ; Burns CS
    Biochemistry; 2007 Apr; 46(14):4261-71. PubMed ID: 17371047
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Raman spectroscopic study on the copper(II) binding mode of prion octapeptide and its pH dependence.
    Miura T; Hori-i A; Mototani H; Takeuchi H
    Biochemistry; 1999 Aug; 38(35):11560-9. PubMed ID: 10471308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mass spectrometric determination of the coordination geometry of potential copper(II) surrogates for the mammalian prion protein octarepeat region.
    Pushie MJ; Ross AR; Vogel HJ
    Anal Chem; 2007 Aug; 79(15):5659-67. PubMed ID: 17608450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.