These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 17333488)

  • 1. Alterations in triad ultrastructure following repetitive stimulation and intracellular changes associated with exercise in amphibian skeletal muscle.
    Usher-Smith JA; Fraser JA; Huang CL; Skepper JN
    J Muscle Res Cell Motil; 2007; 28(1):19-28. PubMed ID: 17333488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of extracellular tonicity on the anatomy of triad complexes in amphibian skeletal muscle.
    Martin CA; Petousi N; Chawla S; Hockaday AR; Burgess AJ; Fraser JA; Huang CL; Skepper JN
    J Muscle Res Cell Motil; 2003; 24(7):407-15. PubMed ID: 14677643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of intracellular acidification on the relationship between cell volume and membrane potential in amphibian skeletal muscle.
    Fraser JA; Middlebrook CE; Usher-Smith JA; Schwiening CJ; Huang CL
    J Physiol; 2005 Mar; 563(Pt 3):745-64. PubMed ID: 15618273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructural changes accompanying development of fatigue in frog twitch skeletal muscle fibres.
    Lipska E; Novotova M; Radzyukevich T; Zahradnik I
    Endocr Regul; 2005 Jun; 39(2):43-52. PubMed ID: 16229154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Persistent tubular conduction in vacuolated amphibian skeletal muscle following osmotic shock.
    Devlin CM; Chawl S; Skepper JN; Huan CL
    J Muscle Res Cell Motil; 2001; 22(5):459-66. PubMed ID: 11964071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of intracellular and extracellular ion changes on E-C coupling and skeletal muscle fatigue.
    Fitts RH; Balog EM
    Acta Physiol Scand; 1996 Mar; 156(3):169-81. PubMed ID: 8729677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of repetitive stimulation on cell volume and its relationship to membrane potential in amphibian skeletal muscle.
    Usher-Smith JA; Skepper JN; Fraser JA; Huang CL
    Pflugers Arch; 2006 May; 452(2):231-9. PubMed ID: 16404610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the excitation-contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils.
    Flucher BE; Takekura H; Franzini-Armstrong C
    Dev Biol; 1993 Nov; 160(1):135-47. PubMed ID: 8224530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histochemical study of calcium on T-tubule membranes and in the sarcoplasmic reticulum, in frog twitch muscle fibres at rest and during activity.
    Uhrík B; Zacharová D
    Histochemistry; 1987; 86(3):305-10. PubMed ID: 3494715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of intracellular lactate and H+ on cell volume in amphibian skeletal muscle.
    Usher-Smith JA; Fraser JA; Bailey PS; Griffin JL; Huang CL
    J Physiol; 2006 Jun; 573(Pt 3):799-818. PubMed ID: 16613877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between intracellular calcium and phosphate in intact mouse muscle during fatigue.
    Allen DG; Clugston E; Petersen Y; Röder IV; Chapman B; Rudolf R
    J Appl Physiol (1985); 2011 Aug; 111(2):358-66. PubMed ID: 21512148
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vacuole formation in fatigued skeletal muscle fibres from frog and mouse: effects of extracellular lactate.
    Lännergren J; Bruton JD; Westerblad H
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):597-611. PubMed ID: 10922011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conduction velocities in amphibian skeletal muscle fibres exposed to hyperosmotic extracellular solutions.
    Chen Z; Hothi SS; Xu W; Huang CL
    J Muscle Res Cell Motil; 2007; 28(4-5):195-202. PubMed ID: 17891463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitation-contraction coupling in isolated locomotor muscle fibres from the pelagic tunicate Doliolum which lack both sarcoplasmic reticulum and transverse tubular system.
    Inoue I; Tsutsui I; Bone Q
    J Comp Physiol B; 2002 Aug; 172(6):541-6. PubMed ID: 12192516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of tension decline in different types of fatigue-resistant skeletal muscle fibres of the frog. Low extracellular calcium effects.
    Radzyukevich T; Lipská E; Pavelková J; Zacharová D
    Gen Physiol Biophys; 1993 Oct; 12(5):473-90. PubMed ID: 8181694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of prolonged low frequency stimulation on skeletal muscle sarcoplasmic reticulum.
    Chin ER; Green HJ; Grange F; Dossett-Mercer J; O'Brien PJ
    Can J Physiol Pharmacol; 1995 Aug; 73(8):1154-64. PubMed ID: 8564884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in calcium homeostasis reduce membrane excitability in amphibian skeletal muscle.
    Usher-Smith JA; Xu W; Fraser JA; Huang CL
    Pflugers Arch; 2006 Nov; 453(2):211-21. PubMed ID: 16955310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of fatigue on depolarization- and caffeine-induced contractures of skinned fibres.
    Williams JH
    Acta Physiol Scand; 2004 Mar; 180(3):265-9. PubMed ID: 14962008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1.
    Ito K; Komazaki S; Sasamoto K; Yoshida M; Nishi M; Kitamura K; Takeshima H
    J Cell Biol; 2001 Sep; 154(5):1059-67. PubMed ID: 11535622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular acidosis enhances the excitability of working muscle.
    Pedersen TH; Nielsen OB; Lamb GD; Stephenson DG
    Science; 2004 Aug; 305(5687):1144-7. PubMed ID: 15326352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.