These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 17333488)
21. Effects of repeated tetanic stimulation on excitation-contraction coupling in cut muscle fibres of the frog. Györke S J Physiol; 1993 May; 464():699-710. PubMed ID: 8229825 [TBL] [Abstract][Full Text] [Related]
23. The pH dependence of the contractile response of fatigued skeletal muscle. Mainwood GW; Renaud JM; Mason MJ Can J Physiol Pharmacol; 1987 Apr; 65(4):648-58. PubMed ID: 3038287 [TBL] [Abstract][Full Text] [Related]
24. ATP formation and ATP hydrolysis during fatiguing, intermittent stimulation of different types of single muscle fibres from Xenopus laevis. Nagesser AS; Van der Laarse WJ; Elzinga G J Muscle Res Cell Motil; 1993 Dec; 14(6):608-18. PubMed ID: 8126221 [TBL] [Abstract][Full Text] [Related]
25. A microelectrode study of the mechanisms of L-lactate entry into and release from frog sartorius muscle. Mason MJ; Thomas RC J Physiol; 1988 Jun; 400():459-79. PubMed ID: 3262155 [TBL] [Abstract][Full Text] [Related]
26. Effects of fatiguing stimulation on intracellular Na+ and K+ in frog skeletal muscle. Balog EM; Fitts RH J Appl Physiol (1985); 1996 Aug; 81(2):679-85. PubMed ID: 8872634 [TBL] [Abstract][Full Text] [Related]
27. Calcium uptake and release modulated by counter-ion conductances in the sarcoplasmic reticulum of skeletal muscle. Fink RH; Veigel C Acta Physiol Scand; 1996 Mar; 156(3):387-96. PubMed ID: 8729699 [TBL] [Abstract][Full Text] [Related]
28. Different effects of verapamil and low calcium on repetitive contractile activity of frog fatigue-resistant and easily-fatigued muscle fibres. Lipská E; Radzyukevich T Gen Physiol Biophys; 1999 Jun; 18(2):139-53. PubMed ID: 10517289 [TBL] [Abstract][Full Text] [Related]
29. Synthesis of polyphosphoinositides in transverse tubule and sarcoplasmic reticulum membranes of frog skeletal muscle. Asotra K; Lagos N; Vergara J Biochim Biophys Acta; 1991 Jan; 1081(2):229-37. PubMed ID: 1847832 [TBL] [Abstract][Full Text] [Related]
30. The tubular vacuolation process in amphibian skeletal muscle. Fraser JA; Skepper JN; Hockaday AR; Huang CL J Muscle Res Cell Motil; 1998 Aug; 19(6):613-29. PubMed ID: 9742446 [TBL] [Abstract][Full Text] [Related]
31. Effect of ADP on slow-twitch muscle fibres of the rat: implications for muscle fatigue. Macdonald WA; Stephenson DG J Physiol; 2006 May; 573(Pt 1):187-98. PubMed ID: 16556653 [TBL] [Abstract][Full Text] [Related]
32. Ion gradients and contractility in skeletal muscle: the role of active Na+, K+ transport. Nielsen OB; Overgaard K Acta Physiol Scand; 1996 Mar; 156(3):247-56. PubMed ID: 8729684 [TBL] [Abstract][Full Text] [Related]
33. [Molecular architecture of the sarcoplasmic reticulum and its role in the ECC]. Rigoard P; Buffenoir K; Wager M; Bauche S; Giot JP; Lapierre F Neurochirurgie; 2009 Mar; 55 Suppl 1():S83-91. PubMed ID: 19233437 [TBL] [Abstract][Full Text] [Related]
34. Cardiac and muscle fatigue due to relative functional overload induced by excessive stimulation, hypersensitive excitation-contraction coupling, or diminished performance capacity correlates with sarcoplasmic reticulum failure. O'Brien PJ; Shen H; Weiler J; Ianuzzo CD; Wittnich C; Moe GW; Armstrong PW Can J Physiol Pharmacol; 1991 Feb; 69(2):262-8. PubMed ID: 2054742 [TBL] [Abstract][Full Text] [Related]
35. Inhibition of creatine kinase reduces the rate of fatigue-induced decrease in tetanic [Ca(2+)](i) in mouse skeletal muscle. Dahlstedt AJ; Westerblad H J Physiol; 2001 Jun; 533(Pt 3):639-49. PubMed ID: 11410623 [TBL] [Abstract][Full Text] [Related]
36. Ultrastructural features of the sarcoplasmic reticulum during rapid cooling contracture and tetanus in frog skeletal muscle. Yoshioka T; Ohmori K; Sakai T Jpn J Physiol; 1981; 31(1):29-42. PubMed ID: 7277891 [TBL] [Abstract][Full Text] [Related]
37. Voltage-dependent mobilization of intracellular calcium in skeletal muscle. Schneider MF Ciba Found Symp; 1986; 122():23-38. PubMed ID: 3792140 [TBL] [Abstract][Full Text] [Related]
39. Stimulation-dependent redistribution of charge movement between unavailable and available states. Stroffekova K; Heiny JA Gen Physiol Biophys; 1997 Mar; 16(1):79-89. PubMed ID: 9290945 [TBL] [Abstract][Full Text] [Related]
40. The effect of energy deprivation and hyperosmolarity upon tubular structures and electrophysiological parameters of muscle fibres. Fink R; Grocki K; Lüttgau HC Eur J Cell Biol; 1980 Apr; 21(1):101-8. PubMed ID: 6966570 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]